| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfac.b |
|- B = ( Base ` G ) |
| 2 |
|
ablfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
| 3 |
|
ablfac.1 |
|- ( ph -> G e. Abel ) |
| 4 |
|
ablfac.2 |
|- ( ph -> B e. Fin ) |
| 5 |
|
ablfac2.m |
|- .x. = ( .g ` G ) |
| 6 |
|
ablfac2.s |
|- S = ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) |
| 7 |
|
wrdf |
|- ( s e. Word C -> s : ( 0 ..^ ( # ` s ) ) --> C ) |
| 8 |
7
|
ad2antlr |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> s : ( 0 ..^ ( # ` s ) ) --> C ) |
| 9 |
8
|
fdmd |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> dom s = ( 0 ..^ ( # ` s ) ) ) |
| 10 |
|
fzofi |
|- ( 0 ..^ ( # ` s ) ) e. Fin |
| 11 |
9 10
|
eqeltrdi |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> dom s e. Fin ) |
| 12 |
8
|
ffdmd |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> s : dom s --> C ) |
| 13 |
12
|
ffvelcdmda |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) e. C ) |
| 14 |
|
oveq2 |
|- ( r = ( s ` k ) -> ( G |`s r ) = ( G |`s ( s ` k ) ) ) |
| 15 |
14
|
eleq1d |
|- ( r = ( s ` k ) -> ( ( G |`s r ) e. ( CycGrp i^i ran pGrp ) <-> ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) ) |
| 16 |
15 2
|
elrab2 |
|- ( ( s ` k ) e. C <-> ( ( s ` k ) e. ( SubGrp ` G ) /\ ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) ) |
| 17 |
16
|
simplbi |
|- ( ( s ` k ) e. C -> ( s ` k ) e. ( SubGrp ` G ) ) |
| 18 |
13 17
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) e. ( SubGrp ` G ) ) |
| 19 |
1
|
subgss |
|- ( ( s ` k ) e. ( SubGrp ` G ) -> ( s ` k ) C_ B ) |
| 20 |
18 19
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) C_ B ) |
| 21 |
16
|
simprbi |
|- ( ( s ` k ) e. C -> ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) |
| 22 |
13 21
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( G |`s ( s ` k ) ) e. ( CycGrp i^i ran pGrp ) ) |
| 23 |
22
|
elin1d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( G |`s ( s ` k ) ) e. CycGrp ) |
| 24 |
|
eqid |
|- ( Base ` ( G |`s ( s ` k ) ) ) = ( Base ` ( G |`s ( s ` k ) ) ) |
| 25 |
|
eqid |
|- ( .g ` ( G |`s ( s ` k ) ) ) = ( .g ` ( G |`s ( s ` k ) ) ) |
| 26 |
24 25
|
iscyg |
|- ( ( G |`s ( s ` k ) ) e. CycGrp <-> ( ( G |`s ( s ` k ) ) e. Grp /\ E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
| 27 |
26
|
simprbi |
|- ( ( G |`s ( s ` k ) ) e. CycGrp -> E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
| 28 |
23 27
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. ( Base ` ( G |`s ( s ` k ) ) ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
| 29 |
|
eqid |
|- ( G |`s ( s ` k ) ) = ( G |`s ( s ` k ) ) |
| 30 |
29
|
subgbas |
|- ( ( s ` k ) e. ( SubGrp ` G ) -> ( s ` k ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
| 31 |
18 30
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( s ` k ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
| 32 |
28 31
|
rexeqtrrdv |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
| 33 |
18
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> ( s ` k ) e. ( SubGrp ` G ) ) |
| 34 |
|
simpr |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> n e. ZZ ) |
| 35 |
|
simplr |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> x e. ( s ` k ) ) |
| 36 |
5 29 25
|
subgmulg |
|- ( ( ( s ` k ) e. ( SubGrp ` G ) /\ n e. ZZ /\ x e. ( s ` k ) ) -> ( n .x. x ) = ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) |
| 37 |
33 34 35 36
|
syl3anc |
|- ( ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) /\ n e. ZZ ) -> ( n .x. x ) = ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) |
| 38 |
37
|
mpteq2dva |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ( n e. ZZ |-> ( n .x. x ) ) = ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) ) |
| 39 |
38
|
rneqd |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ran ( n e. ZZ |-> ( n .x. x ) ) = ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) ) |
| 40 |
31
|
adantr |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ( s ` k ) = ( Base ` ( G |`s ( s ` k ) ) ) ) |
| 41 |
39 40
|
eqeq12d |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) /\ x e. ( s ` k ) ) -> ( ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) <-> ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
| 42 |
41
|
rexbidva |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> ( E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) <-> E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n ( .g ` ( G |`s ( s ` k ) ) ) x ) ) = ( Base ` ( G |`s ( s ` k ) ) ) ) ) |
| 43 |
32 42
|
mpbird |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) |
| 44 |
|
ssrexv |
|- ( ( s ` k ) C_ B -> ( E. x e. ( s ` k ) ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) -> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) ) |
| 45 |
20 43 44
|
sylc |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ k e. dom s ) -> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) |
| 46 |
45
|
ralrimiva |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> A. k e. dom s E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) |
| 47 |
|
oveq2 |
|- ( x = ( w ` k ) -> ( n .x. x ) = ( n .x. ( w ` k ) ) ) |
| 48 |
47
|
mpteq2dv |
|- ( x = ( w ` k ) -> ( n e. ZZ |-> ( n .x. x ) ) = ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) |
| 49 |
48
|
rneqd |
|- ( x = ( w ` k ) -> ran ( n e. ZZ |-> ( n .x. x ) ) = ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) |
| 50 |
49
|
eqeq1d |
|- ( x = ( w ` k ) -> ( ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) <-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
| 51 |
50
|
ac6sfi |
|- ( ( dom s e. Fin /\ A. k e. dom s E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = ( s ` k ) ) -> E. w ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
| 52 |
11 46 51
|
syl2anc |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> E. w ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) |
| 53 |
|
simprl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> w : dom s --> B ) |
| 54 |
9
|
adantr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> dom s = ( 0 ..^ ( # ` s ) ) ) |
| 55 |
54
|
feq2d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( w : dom s --> B <-> w : ( 0 ..^ ( # ` s ) ) --> B ) ) |
| 56 |
53 55
|
mpbid |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> w : ( 0 ..^ ( # ` s ) ) --> B ) |
| 57 |
|
iswrdi |
|- ( w : ( 0 ..^ ( # ` s ) ) --> B -> w e. Word B ) |
| 58 |
56 57
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> w e. Word B ) |
| 59 |
53
|
fdmd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> dom w = dom s ) |
| 60 |
59
|
eleq2d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( j e. dom w <-> j e. dom s ) ) |
| 61 |
60
|
biimpa |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom w ) -> j e. dom s ) |
| 62 |
|
simprr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) |
| 63 |
|
simpl |
|- ( ( k = j /\ n e. ZZ ) -> k = j ) |
| 64 |
63
|
fveq2d |
|- ( ( k = j /\ n e. ZZ ) -> ( w ` k ) = ( w ` j ) ) |
| 65 |
64
|
oveq2d |
|- ( ( k = j /\ n e. ZZ ) -> ( n .x. ( w ` k ) ) = ( n .x. ( w ` j ) ) ) |
| 66 |
65
|
mpteq2dva |
|- ( k = j -> ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
| 67 |
66
|
rneqd |
|- ( k = j -> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
| 68 |
|
fveq2 |
|- ( k = j -> ( s ` k ) = ( s ` j ) ) |
| 69 |
67 68
|
eqeq12d |
|- ( k = j -> ( ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) <-> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) = ( s ` j ) ) ) |
| 70 |
69
|
rspccva |
|- ( ( A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) /\ j e. dom s ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) = ( s ` j ) ) |
| 71 |
62 70
|
sylan |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom s ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) = ( s ` j ) ) |
| 72 |
12
|
adantr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> s : dom s --> C ) |
| 73 |
72
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom s ) -> ( s ` j ) e. C ) |
| 74 |
71 73
|
eqeltrd |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom s ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) e. C ) |
| 75 |
61 74
|
syldan |
|- ( ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) /\ j e. dom w ) -> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) e. C ) |
| 76 |
|
fveq2 |
|- ( k = j -> ( w ` k ) = ( w ` j ) ) |
| 77 |
76
|
oveq2d |
|- ( k = j -> ( n .x. ( w ` k ) ) = ( n .x. ( w ` j ) ) ) |
| 78 |
77
|
mpteq2dv |
|- ( k = j -> ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
| 79 |
78
|
rneqd |
|- ( k = j -> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
| 80 |
79
|
cbvmptv |
|- ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) = ( j e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
| 81 |
6 80
|
eqtri |
|- S = ( j e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` j ) ) ) ) |
| 82 |
75 81
|
fmptd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> S : dom w --> C ) |
| 83 |
|
simprl |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> G dom DProd s ) |
| 84 |
83
|
adantr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> G dom DProd s ) |
| 85 |
62 59
|
raleqtrrdv |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> A. k e. dom w ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) |
| 86 |
|
mpteq12 |
|- ( ( dom w = dom s /\ A. k e. dom w ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) -> ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) = ( k e. dom s |-> ( s ` k ) ) ) |
| 87 |
59 85 86
|
syl2anc |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( k e. dom w |-> ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) ) = ( k e. dom s |-> ( s ` k ) ) ) |
| 88 |
6 87
|
eqtrid |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> S = ( k e. dom s |-> ( s ` k ) ) ) |
| 89 |
|
dprdf |
|- ( G dom DProd s -> s : dom s --> ( SubGrp ` G ) ) |
| 90 |
84 89
|
syl |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> s : dom s --> ( SubGrp ` G ) ) |
| 91 |
90
|
feqmptd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> s = ( k e. dom s |-> ( s ` k ) ) ) |
| 92 |
88 91
|
eqtr4d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> S = s ) |
| 93 |
84 92
|
breqtrrd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> G dom DProd S ) |
| 94 |
92
|
oveq2d |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( G DProd S ) = ( G DProd s ) ) |
| 95 |
|
simplrr |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( G DProd s ) = B ) |
| 96 |
94 95
|
eqtrd |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( G DProd S ) = B ) |
| 97 |
82 93 96
|
3jca |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) |
| 98 |
58 97
|
jca |
|- ( ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) /\ ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) ) -> ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) |
| 99 |
98
|
ex |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> ( ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) -> ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) ) |
| 100 |
99
|
eximdv |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> ( E. w ( w : dom s --> B /\ A. k e. dom s ran ( n e. ZZ |-> ( n .x. ( w ` k ) ) ) = ( s ` k ) ) -> E. w ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) ) |
| 101 |
52 100
|
mpd |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> E. w ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) |
| 102 |
|
df-rex |
|- ( E. w e. Word B ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) <-> E. w ( w e. Word B /\ ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) ) |
| 103 |
101 102
|
sylibr |
|- ( ( ( ph /\ s e. Word C ) /\ ( G dom DProd s /\ ( G DProd s ) = B ) ) -> E. w e. Word B ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) |
| 104 |
1 2 3 4
|
ablfac |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) |
| 105 |
103 104
|
r19.29a |
|- ( ph -> E. w e. Word B ( S : dom w --> C /\ G dom DProd S /\ ( G DProd S ) = B ) ) |