| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 2 |
|
difss |
|- ( A \ |^| ( _om \ A ) ) C_ A |
| 3 |
1
|
ackbij1lem11 |
|- ( ( A e. ( ~P _om i^i Fin ) /\ ( A \ |^| ( _om \ A ) ) C_ A ) -> ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) ) |
| 4 |
2 3
|
mpan2 |
|- ( A e. ( ~P _om i^i Fin ) -> ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) ) |
| 5 |
|
difss |
|- ( _om \ A ) C_ _om |
| 6 |
|
omsson |
|- _om C_ On |
| 7 |
5 6
|
sstri |
|- ( _om \ A ) C_ On |
| 8 |
|
ominf |
|- -. _om e. Fin |
| 9 |
|
elinel2 |
|- ( A e. ( ~P _om i^i Fin ) -> A e. Fin ) |
| 10 |
|
difinf |
|- ( ( -. _om e. Fin /\ A e. Fin ) -> -. ( _om \ A ) e. Fin ) |
| 11 |
8 9 10
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> -. ( _om \ A ) e. Fin ) |
| 12 |
|
0fi |
|- (/) e. Fin |
| 13 |
|
eleq1 |
|- ( ( _om \ A ) = (/) -> ( ( _om \ A ) e. Fin <-> (/) e. Fin ) ) |
| 14 |
12 13
|
mpbiri |
|- ( ( _om \ A ) = (/) -> ( _om \ A ) e. Fin ) |
| 15 |
14
|
necon3bi |
|- ( -. ( _om \ A ) e. Fin -> ( _om \ A ) =/= (/) ) |
| 16 |
11 15
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( _om \ A ) =/= (/) ) |
| 17 |
|
onint |
|- ( ( ( _om \ A ) C_ On /\ ( _om \ A ) =/= (/) ) -> |^| ( _om \ A ) e. ( _om \ A ) ) |
| 18 |
7 16 17
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. ( _om \ A ) ) |
| 19 |
18
|
eldifad |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. _om ) |
| 20 |
|
ackbij1lem4 |
|- ( |^| ( _om \ A ) e. _om -> { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) |
| 21 |
19 20
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) |
| 22 |
|
ackbij1lem6 |
|- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) -> ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) ) |
| 23 |
4 21 22
|
syl2anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) ) |
| 24 |
18
|
eldifbd |
|- ( A e. ( ~P _om i^i Fin ) -> -. |^| ( _om \ A ) e. A ) |
| 25 |
|
disjsn |
|- ( ( A i^i { |^| ( _om \ A ) } ) = (/) <-> -. |^| ( _om \ A ) e. A ) |
| 26 |
24 25
|
sylibr |
|- ( A e. ( ~P _om i^i Fin ) -> ( A i^i { |^| ( _om \ A ) } ) = (/) ) |
| 27 |
|
ssdisj |
|- ( ( ( A \ |^| ( _om \ A ) ) C_ A /\ ( A i^i { |^| ( _om \ A ) } ) = (/) ) -> ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) |
| 28 |
2 26 27
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) |
| 29 |
1
|
ackbij1lem9 |
|- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) /\ ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) ) |
| 30 |
4 21 28 29
|
syl3anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) ) |
| 31 |
1
|
ackbij1lem14 |
|- ( |^| ( _om \ A ) e. _om -> ( F ` { |^| ( _om \ A ) } ) = suc ( F ` |^| ( _om \ A ) ) ) |
| 32 |
19 31
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` { |^| ( _om \ A ) } ) = suc ( F ` |^| ( _om \ A ) ) ) |
| 33 |
32
|
oveq2d |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) ) |
| 34 |
1
|
ackbij1lem10 |
|- F : ( ~P _om i^i Fin ) --> _om |
| 35 |
34
|
ffvelcdmi |
|- ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) -> ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om ) |
| 36 |
4 35
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om ) |
| 37 |
|
ackbij1lem3 |
|- ( |^| ( _om \ A ) e. _om -> |^| ( _om \ A ) e. ( ~P _om i^i Fin ) ) |
| 38 |
19 37
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. ( ~P _om i^i Fin ) ) |
| 39 |
34
|
ffvelcdmi |
|- ( |^| ( _om \ A ) e. ( ~P _om i^i Fin ) -> ( F ` |^| ( _om \ A ) ) e. _om ) |
| 40 |
38 39
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` |^| ( _om \ A ) ) e. _om ) |
| 41 |
|
nnasuc |
|- ( ( ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om /\ ( F ` |^| ( _om \ A ) ) e. _om ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 42 |
36 40 41
|
syl2anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 43 |
|
disjdifr |
|- ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) |
| 44 |
43
|
a1i |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) ) |
| 45 |
1
|
ackbij1lem9 |
|- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ |^| ( _om \ A ) e. ( ~P _om i^i Fin ) /\ ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 46 |
4 38 44 45
|
syl3anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
| 47 |
|
uncom |
|- ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) = ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) |
| 48 |
|
onnmin |
|- ( ( ( _om \ A ) C_ On /\ a e. ( _om \ A ) ) -> -. a e. |^| ( _om \ A ) ) |
| 49 |
7 48
|
mpan |
|- ( a e. ( _om \ A ) -> -. a e. |^| ( _om \ A ) ) |
| 50 |
49
|
con2i |
|- ( a e. |^| ( _om \ A ) -> -. a e. ( _om \ A ) ) |
| 51 |
50
|
adantl |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> -. a e. ( _om \ A ) ) |
| 52 |
|
ordom |
|- Ord _om |
| 53 |
|
ordelss |
|- ( ( Ord _om /\ |^| ( _om \ A ) e. _om ) -> |^| ( _om \ A ) C_ _om ) |
| 54 |
52 19 53
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) C_ _om ) |
| 55 |
54
|
sselda |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> a e. _om ) |
| 56 |
|
eldif |
|- ( a e. ( _om \ A ) <-> ( a e. _om /\ -. a e. A ) ) |
| 57 |
56
|
simplbi2 |
|- ( a e. _om -> ( -. a e. A -> a e. ( _om \ A ) ) ) |
| 58 |
57
|
orrd |
|- ( a e. _om -> ( a e. A \/ a e. ( _om \ A ) ) ) |
| 59 |
58
|
orcomd |
|- ( a e. _om -> ( a e. ( _om \ A ) \/ a e. A ) ) |
| 60 |
55 59
|
syl |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> ( a e. ( _om \ A ) \/ a e. A ) ) |
| 61 |
|
orel1 |
|- ( -. a e. ( _om \ A ) -> ( ( a e. ( _om \ A ) \/ a e. A ) -> a e. A ) ) |
| 62 |
51 60 61
|
sylc |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> a e. A ) |
| 63 |
62
|
ex |
|- ( A e. ( ~P _om i^i Fin ) -> ( a e. |^| ( _om \ A ) -> a e. A ) ) |
| 64 |
63
|
ssrdv |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) C_ A ) |
| 65 |
|
undif |
|- ( |^| ( _om \ A ) C_ A <-> ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) = A ) |
| 66 |
64 65
|
sylib |
|- ( A e. ( ~P _om i^i Fin ) -> ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) = A ) |
| 67 |
47 66
|
eqtrid |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) = A ) |
| 68 |
67
|
fveq2d |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( F ` A ) ) |
| 69 |
46 68
|
eqtr3d |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = ( F ` A ) ) |
| 70 |
|
suceq |
|- ( ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = ( F ` A ) -> suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
| 71 |
69 70
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
| 72 |
42 71
|
eqtrd |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
| 73 |
30 33 72
|
3eqtrd |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) |
| 74 |
|
fveqeq2 |
|- ( b = ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) -> ( ( F ` b ) = suc ( F ` A ) <-> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) ) |
| 75 |
74
|
rspcev |
|- ( ( ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) /\ ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |
| 76 |
23 73 75
|
syl2anc |
|- ( A e. ( ~P _om i^i Fin ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |