| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elreal2 |
|- ( x e. RR <-> ( ( 1st ` x ) e. R. /\ x = <. ( 1st ` x ) , 0R >. ) ) |
| 2 |
1
|
simplbi |
|- ( x e. RR -> ( 1st ` x ) e. R. ) |
| 3 |
2
|
adantl |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( 1st ` x ) e. R. ) |
| 4 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 5 |
|
fof |
|- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
| 6 |
|
ffn |
|- ( 1st : _V --> _V -> 1st Fn _V ) |
| 7 |
4 5 6
|
mp2b |
|- 1st Fn _V |
| 8 |
|
ssv |
|- A C_ _V |
| 9 |
|
fvelimab |
|- ( ( 1st Fn _V /\ A C_ _V ) -> ( w e. ( 1st " A ) <-> E. y e. A ( 1st ` y ) = w ) ) |
| 10 |
7 8 9
|
mp2an |
|- ( w e. ( 1st " A ) <-> E. y e. A ( 1st ` y ) = w ) |
| 11 |
|
r19.29 |
|- ( ( A. y e. A y E. y e. A ( y |
| 12 |
|
ssel2 |
|- ( ( A C_ RR /\ y e. A ) -> y e. RR ) |
| 13 |
|
ltresr2 |
|- ( ( y e. RR /\ x e. RR ) -> ( y ( 1st ` y ) |
| 14 |
|
breq1 |
|- ( ( 1st ` y ) = w -> ( ( 1st ` y ) w |
| 15 |
13 14
|
sylan9bb |
|- ( ( ( y e. RR /\ x e. RR ) /\ ( 1st ` y ) = w ) -> ( y w |
| 16 |
15
|
biimpd |
|- ( ( ( y e. RR /\ x e. RR ) /\ ( 1st ` y ) = w ) -> ( y w |
| 17 |
16
|
exp31 |
|- ( y e. RR -> ( x e. RR -> ( ( 1st ` y ) = w -> ( y w |
| 18 |
12 17
|
syl |
|- ( ( A C_ RR /\ y e. A ) -> ( x e. RR -> ( ( 1st ` y ) = w -> ( y w |
| 19 |
18
|
imp4b |
|- ( ( ( A C_ RR /\ y e. A ) /\ x e. RR ) -> ( ( ( 1st ` y ) = w /\ y w |
| 20 |
19
|
ancomsd |
|- ( ( ( A C_ RR /\ y e. A ) /\ x e. RR ) -> ( ( y w |
| 21 |
20
|
an32s |
|- ( ( ( A C_ RR /\ x e. RR ) /\ y e. A ) -> ( ( y w |
| 22 |
21
|
rexlimdva |
|- ( ( A C_ RR /\ x e. RR ) -> ( E. y e. A ( y w |
| 23 |
11 22
|
syl5 |
|- ( ( A C_ RR /\ x e. RR ) -> ( ( A. y e. A y w |
| 24 |
23
|
expd |
|- ( ( A C_ RR /\ x e. RR ) -> ( A. y e. A y ( E. y e. A ( 1st ` y ) = w -> w |
| 25 |
10 24
|
syl7bi |
|- ( ( A C_ RR /\ x e. RR ) -> ( A. y e. A y ( w e. ( 1st " A ) -> w |
| 26 |
25
|
impr |
|- ( ( A C_ RR /\ ( x e. RR /\ A. y e. A y ( w e. ( 1st " A ) -> w |
| 27 |
26
|
adantlr |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ ( x e. RR /\ A. y e. A y ( w e. ( 1st " A ) -> w |
| 28 |
27
|
ralrimiv |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ ( x e. RR /\ A. y e. A y A. w e. ( 1st " A ) w |
| 29 |
28
|
expr |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( A. y e. A y A. w e. ( 1st " A ) w |
| 30 |
|
brralrspcev |
|- ( ( ( 1st ` x ) e. R. /\ A. w e. ( 1st " A ) w E. v e. R. A. w e. ( 1st " A ) w |
| 31 |
3 29 30
|
syl6an |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( A. y e. A y E. v e. R. A. w e. ( 1st " A ) w |
| 32 |
31
|
rexlimdva |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( E. x e. RR A. y e. A y E. v e. R. A. w e. ( 1st " A ) w |
| 33 |
|
n0 |
|- ( A =/= (/) <-> E. y y e. A ) |
| 34 |
|
fnfvima |
|- ( ( 1st Fn _V /\ A C_ _V /\ y e. A ) -> ( 1st ` y ) e. ( 1st " A ) ) |
| 35 |
7 8 34
|
mp3an12 |
|- ( y e. A -> ( 1st ` y ) e. ( 1st " A ) ) |
| 36 |
35
|
ne0d |
|- ( y e. A -> ( 1st " A ) =/= (/) ) |
| 37 |
36
|
exlimiv |
|- ( E. y y e. A -> ( 1st " A ) =/= (/) ) |
| 38 |
33 37
|
sylbi |
|- ( A =/= (/) -> ( 1st " A ) =/= (/) ) |
| 39 |
|
supsr |
|- ( ( ( 1st " A ) =/= (/) /\ E. v e. R. A. w e. ( 1st " A ) w E. v e. R. ( A. w e. ( 1st " A ) -. v E. u e. ( 1st " A ) w |
| 40 |
39
|
ex |
|- ( ( 1st " A ) =/= (/) -> ( E. v e. R. A. w e. ( 1st " A ) w E. v e. R. ( A. w e. ( 1st " A ) -. v E. u e. ( 1st " A ) w |
| 41 |
38 40
|
syl |
|- ( A =/= (/) -> ( E. v e. R. A. w e. ( 1st " A ) w E. v e. R. ( A. w e. ( 1st " A ) -. v E. u e. ( 1st " A ) w |
| 42 |
41
|
adantl |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( E. v e. R. A. w e. ( 1st " A ) w E. v e. R. ( A. w e. ( 1st " A ) -. v E. u e. ( 1st " A ) w |
| 43 |
|
breq2 |
|- ( w = ( 1st ` y ) -> ( v v |
| 44 |
43
|
notbid |
|- ( w = ( 1st ` y ) -> ( -. v -. v |
| 45 |
44
|
rspccv |
|- ( A. w e. ( 1st " A ) -. v ( ( 1st ` y ) e. ( 1st " A ) -> -. v |
| 46 |
35 45
|
syl5com |
|- ( y e. A -> ( A. w e. ( 1st " A ) -. v -. v |
| 47 |
46
|
adantl |
|- ( ( A C_ RR /\ y e. A ) -> ( A. w e. ( 1st " A ) -. v -. v |
| 48 |
|
elreal2 |
|- ( y e. RR <-> ( ( 1st ` y ) e. R. /\ y = <. ( 1st ` y ) , 0R >. ) ) |
| 49 |
48
|
simprbi |
|- ( y e. RR -> y = <. ( 1st ` y ) , 0R >. ) |
| 50 |
49
|
breq2d |
|- ( y e. RR -> ( <. v , 0R >. <. v , 0R >. . ) ) |
| 51 |
|
ltresr |
|- ( <. v , 0R >. . <-> v |
| 52 |
50 51
|
bitrdi |
|- ( y e. RR -> ( <. v , 0R >. v |
| 53 |
12 52
|
syl |
|- ( ( A C_ RR /\ y e. A ) -> ( <. v , 0R >. v |
| 54 |
53
|
notbid |
|- ( ( A C_ RR /\ y e. A ) -> ( -. <. v , 0R >. -. v |
| 55 |
47 54
|
sylibrd |
|- ( ( A C_ RR /\ y e. A ) -> ( A. w e. ( 1st " A ) -. v -. <. v , 0R >. |
| 56 |
55
|
ralrimdva |
|- ( A C_ RR -> ( A. w e. ( 1st " A ) -. v A. y e. A -. <. v , 0R >. |
| 57 |
56
|
ad2antrr |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. ( 1st " A ) -. v A. y e. A -. <. v , 0R >. |
| 58 |
49
|
breq1d |
|- ( y e. RR -> ( y . <-> <. ( 1st ` y ) , 0R >. . ) ) |
| 59 |
|
ltresr |
|- ( <. ( 1st ` y ) , 0R >. . <-> ( 1st ` y ) |
| 60 |
58 59
|
bitrdi |
|- ( y e. RR -> ( y . <-> ( 1st ` y ) |
| 61 |
48
|
simplbi |
|- ( y e. RR -> ( 1st ` y ) e. R. ) |
| 62 |
|
breq1 |
|- ( w = ( 1st ` y ) -> ( w ( 1st ` y ) |
| 63 |
|
breq1 |
|- ( w = ( 1st ` y ) -> ( w ( 1st ` y ) |
| 64 |
63
|
rexbidv |
|- ( w = ( 1st ` y ) -> ( E. u e. ( 1st " A ) w E. u e. ( 1st " A ) ( 1st ` y ) |
| 65 |
62 64
|
imbi12d |
|- ( w = ( 1st ` y ) -> ( ( w E. u e. ( 1st " A ) w ( ( 1st ` y ) E. u e. ( 1st " A ) ( 1st ` y ) |
| 66 |
65
|
rspccv |
|- ( A. w e. R. ( w E. u e. ( 1st " A ) w ( ( 1st ` y ) e. R. -> ( ( 1st ` y ) E. u e. ( 1st " A ) ( 1st ` y ) |
| 67 |
61 66
|
syl5 |
|- ( A. w e. R. ( w E. u e. ( 1st " A ) w ( y e. RR -> ( ( 1st ` y ) E. u e. ( 1st " A ) ( 1st ` y ) |
| 68 |
67
|
com3l |
|- ( y e. RR -> ( ( 1st ` y ) ( A. w e. R. ( w E. u e. ( 1st " A ) w E. u e. ( 1st " A ) ( 1st ` y ) |
| 69 |
60 68
|
sylbid |
|- ( y e. RR -> ( y . -> ( A. w e. R. ( w E. u e. ( 1st " A ) w E. u e. ( 1st " A ) ( 1st ` y ) |
| 70 |
69
|
adantr |
|- ( ( y e. RR /\ A C_ RR ) -> ( y . -> ( A. w e. R. ( w E. u e. ( 1st " A ) w E. u e. ( 1st " A ) ( 1st ` y ) |
| 71 |
|
fvelimab |
|- ( ( 1st Fn _V /\ A C_ _V ) -> ( u e. ( 1st " A ) <-> E. z e. A ( 1st ` z ) = u ) ) |
| 72 |
7 8 71
|
mp2an |
|- ( u e. ( 1st " A ) <-> E. z e. A ( 1st ` z ) = u ) |
| 73 |
|
ssel2 |
|- ( ( A C_ RR /\ z e. A ) -> z e. RR ) |
| 74 |
|
ltresr2 |
|- ( ( y e. RR /\ z e. RR ) -> ( y ( 1st ` y ) |
| 75 |
73 74
|
sylan2 |
|- ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) -> ( y ( 1st ` y ) |
| 76 |
|
breq2 |
|- ( ( 1st ` z ) = u -> ( ( 1st ` y ) ( 1st ` y ) |
| 77 |
75 76
|
sylan9bb |
|- ( ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) /\ ( 1st ` z ) = u ) -> ( y ( 1st ` y ) |
| 78 |
77
|
exbiri |
|- ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) -> ( ( 1st ` z ) = u -> ( ( 1st ` y ) y |
| 79 |
78
|
expr |
|- ( ( y e. RR /\ A C_ RR ) -> ( z e. A -> ( ( 1st ` z ) = u -> ( ( 1st ` y ) y |
| 80 |
79
|
com4r |
|- ( ( 1st ` y ) ( ( y e. RR /\ A C_ RR ) -> ( z e. A -> ( ( 1st ` z ) = u -> y |
| 81 |
80
|
imp |
|- ( ( ( 1st ` y ) ( z e. A -> ( ( 1st ` z ) = u -> y |
| 82 |
81
|
reximdvai |
|- ( ( ( 1st ` y ) ( E. z e. A ( 1st ` z ) = u -> E. z e. A y |
| 83 |
72 82
|
biimtrid |
|- ( ( ( 1st ` y ) ( u e. ( 1st " A ) -> E. z e. A y |
| 84 |
83
|
expcom |
|- ( ( y e. RR /\ A C_ RR ) -> ( ( 1st ` y ) ( u e. ( 1st " A ) -> E. z e. A y |
| 85 |
84
|
com23 |
|- ( ( y e. RR /\ A C_ RR ) -> ( u e. ( 1st " A ) -> ( ( 1st ` y ) E. z e. A y |
| 86 |
85
|
rexlimdv |
|- ( ( y e. RR /\ A C_ RR ) -> ( E. u e. ( 1st " A ) ( 1st ` y ) E. z e. A y |
| 87 |
70 86
|
syl6d |
|- ( ( y e. RR /\ A C_ RR ) -> ( y . -> ( A. w e. R. ( w E. u e. ( 1st " A ) w E. z e. A y |
| 88 |
87
|
com23 |
|- ( ( y e. RR /\ A C_ RR ) -> ( A. w e. R. ( w E. u e. ( 1st " A ) w ( y . -> E. z e. A y |
| 89 |
88
|
ex |
|- ( y e. RR -> ( A C_ RR -> ( A. w e. R. ( w E. u e. ( 1st " A ) w ( y . -> E. z e. A y |
| 90 |
89
|
com3l |
|- ( A C_ RR -> ( A. w e. R. ( w E. u e. ( 1st " A ) w ( y e. RR -> ( y . -> E. z e. A y |
| 91 |
90
|
ad2antrr |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. R. ( w E. u e. ( 1st " A ) w ( y e. RR -> ( y . -> E. z e. A y |
| 92 |
91
|
ralrimdv |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. R. ( w E. u e. ( 1st " A ) w A. y e. RR ( y . -> E. z e. A y |
| 93 |
|
opelreal |
|- ( <. v , 0R >. e. RR <-> v e. R. ) |
| 94 |
93
|
biimpri |
|- ( v e. R. -> <. v , 0R >. e. RR ) |
| 95 |
94
|
adantl |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> <. v , 0R >. e. RR ) |
| 96 |
|
breq1 |
|- ( x = <. v , 0R >. -> ( x <. v , 0R >. |
| 97 |
96
|
notbid |
|- ( x = <. v , 0R >. -> ( -. x -. <. v , 0R >. |
| 98 |
97
|
ralbidv |
|- ( x = <. v , 0R >. -> ( A. y e. A -. x A. y e. A -. <. v , 0R >. |
| 99 |
|
breq2 |
|- ( x = <. v , 0R >. -> ( y y . ) ) |
| 100 |
99
|
imbi1d |
|- ( x = <. v , 0R >. -> ( ( y E. z e. A y ( y . -> E. z e. A y |
| 101 |
100
|
ralbidv |
|- ( x = <. v , 0R >. -> ( A. y e. RR ( y E. z e. A y A. y e. RR ( y . -> E. z e. A y |
| 102 |
98 101
|
anbi12d |
|- ( x = <. v , 0R >. -> ( ( A. y e. A -. x E. z e. A y ( A. y e. A -. <. v , 0R >. . -> E. z e. A y |
| 103 |
102
|
rspcev |
|- ( ( <. v , 0R >. e. RR /\ ( A. y e. A -. <. v , 0R >. . -> E. z e. A y E. x e. RR ( A. y e. A -. x E. z e. A y |
| 104 |
103
|
ex |
|- ( <. v , 0R >. e. RR -> ( ( A. y e. A -. <. v , 0R >. . -> E. z e. A y E. x e. RR ( A. y e. A -. x E. z e. A y |
| 105 |
95 104
|
syl |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( ( A. y e. A -. <. v , 0R >. . -> E. z e. A y E. x e. RR ( A. y e. A -. x E. z e. A y |
| 106 |
57 92 105
|
syl2and |
|- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( ( A. w e. ( 1st " A ) -. v E. u e. ( 1st " A ) w E. x e. RR ( A. y e. A -. x E. z e. A y |
| 107 |
106
|
rexlimdva |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( E. v e. R. ( A. w e. ( 1st " A ) -. v E. u e. ( 1st " A ) w E. x e. RR ( A. y e. A -. x E. z e. A y |
| 108 |
32 42 107
|
3syld |
|- ( ( A C_ RR /\ A =/= (/) ) -> ( E. x e. RR A. y e. A y E. x e. RR ( A. y e. A -. x E. z e. A y |
| 109 |
108
|
3impia |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y E. x e. RR ( A. y e. A -. x E. z e. A y |