Step |
Hyp |
Ref |
Expression |
1 |
|
bj-imdirco.exa |
|- ( ph -> A e. U ) |
2 |
|
bj-imdirco.exb |
|- ( ph -> B e. V ) |
3 |
|
bj-imdirco.exc |
|- ( ph -> C e. W ) |
4 |
|
bj-imdirco.arg1 |
|- ( ph -> R C_ ( A X. B ) ) |
5 |
|
bj-imdirco.arg2 |
|- ( ph -> S C_ ( B X. C ) ) |
6 |
|
imaco |
|- ( ( S o. R ) " x ) = ( S " ( R " x ) ) |
7 |
6
|
eqeq1i |
|- ( ( ( S o. R ) " x ) = z <-> ( S " ( R " x ) ) = z ) |
8 |
7
|
anbi2i |
|- ( ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) <-> ( ( x C_ A /\ z C_ C ) /\ ( S " ( R " x ) ) = z ) ) |
9 |
8
|
a1i |
|- ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) <-> ( ( x C_ A /\ z C_ C ) /\ ( S " ( R " x ) ) = z ) ) ) |
10 |
1 2
|
xpexd |
|- ( ph -> ( A X. B ) e. _V ) |
11 |
10 4
|
ssexd |
|- ( ph -> R e. _V ) |
12 |
|
imaexg |
|- ( R e. _V -> ( R " x ) e. _V ) |
13 |
11 12
|
syl |
|- ( ph -> ( R " x ) e. _V ) |
14 |
|
imass1 |
|- ( R C_ ( A X. B ) -> ( R " x ) C_ ( ( A X. B ) " x ) ) |
15 |
|
xpima |
|- ( ( A X. B ) " x ) = if ( ( A i^i x ) = (/) , (/) , B ) |
16 |
|
simpr |
|- ( ( ( A i^i x ) = (/) /\ u e. (/) ) -> u e. (/) ) |
17 |
|
simpr |
|- ( ( -. ( A i^i x ) = (/) /\ u e. B ) -> u e. B ) |
18 |
16 17
|
orim12i |
|- ( ( ( ( A i^i x ) = (/) /\ u e. (/) ) \/ ( -. ( A i^i x ) = (/) /\ u e. B ) ) -> ( u e. (/) \/ u e. B ) ) |
19 |
|
elif |
|- ( u e. if ( ( A i^i x ) = (/) , (/) , B ) <-> ( ( ( A i^i x ) = (/) /\ u e. (/) ) \/ ( -. ( A i^i x ) = (/) /\ u e. B ) ) ) |
20 |
|
elun |
|- ( u e. ( (/) u. B ) <-> ( u e. (/) \/ u e. B ) ) |
21 |
18 19 20
|
3imtr4i |
|- ( u e. if ( ( A i^i x ) = (/) , (/) , B ) -> u e. ( (/) u. B ) ) |
22 |
21
|
ssriv |
|- if ( ( A i^i x ) = (/) , (/) , B ) C_ ( (/) u. B ) |
23 |
|
0ss |
|- (/) C_ B |
24 |
|
ssid |
|- B C_ B |
25 |
23 24
|
unssi |
|- ( (/) u. B ) C_ B |
26 |
22 25
|
sstri |
|- if ( ( A i^i x ) = (/) , (/) , B ) C_ B |
27 |
15 26
|
eqsstri |
|- ( ( A X. B ) " x ) C_ B |
28 |
14 27
|
sstrdi |
|- ( R C_ ( A X. B ) -> ( R " x ) C_ B ) |
29 |
4 28
|
syl |
|- ( ph -> ( R " x ) C_ B ) |
30 |
|
eqidd |
|- ( ph -> ( R " x ) = ( R " x ) ) |
31 |
29 30
|
jca |
|- ( ph -> ( ( R " x ) C_ B /\ ( R " x ) = ( R " x ) ) ) |
32 |
|
sseq1 |
|- ( y = ( R " x ) -> ( y C_ B <-> ( R " x ) C_ B ) ) |
33 |
|
eqeq2 |
|- ( y = ( R " x ) -> ( ( R " x ) = y <-> ( R " x ) = ( R " x ) ) ) |
34 |
32 33
|
anbi12d |
|- ( y = ( R " x ) -> ( ( y C_ B /\ ( R " x ) = y ) <-> ( ( R " x ) C_ B /\ ( R " x ) = ( R " x ) ) ) ) |
35 |
13 31 34
|
spcedv |
|- ( ph -> E. y ( y C_ B /\ ( R " x ) = y ) ) |
36 |
35
|
biantrurd |
|- ( ph -> ( ( S " ( R " x ) ) = z <-> ( E. y ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) ) ) |
37 |
|
19.41v |
|- ( E. y ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> ( E. y ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) ) |
38 |
|
anass |
|- ( ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) |
39 |
38
|
exbii |
|- ( E. y ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) |
40 |
37 39
|
bitr3i |
|- ( ( E. y ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) |
41 |
36 40
|
bitrdi |
|- ( ph -> ( ( S " ( R " x ) ) = z <-> E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) ) |
42 |
|
imaeq2 |
|- ( ( R " x ) = y -> ( S " ( R " x ) ) = ( S " y ) ) |
43 |
42
|
eqeq1d |
|- ( ( R " x ) = y -> ( ( S " ( R " x ) ) = z <-> ( S " y ) = z ) ) |
44 |
43
|
pm5.32i |
|- ( ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) <-> ( ( R " x ) = y /\ ( S " y ) = z ) ) |
45 |
44
|
bianass |
|- ( ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " y ) = z ) ) |
46 |
45
|
biancomi |
|- ( ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
47 |
46
|
exbii |
|- ( E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
48 |
47
|
a1i |
|- ( ph -> ( E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
49 |
|
pm4.24 |
|- ( y C_ B <-> ( y C_ B /\ y C_ B ) ) |
50 |
49
|
anbi1i |
|- ( ( y C_ B /\ ( R " x ) = y ) <-> ( ( y C_ B /\ y C_ B ) /\ ( R " x ) = y ) ) |
51 |
|
anass |
|- ( ( ( y C_ B /\ y C_ B ) /\ ( R " x ) = y ) <-> ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
52 |
50 51
|
bitri |
|- ( ( y C_ B /\ ( R " x ) = y ) <-> ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
53 |
52
|
anbi2i |
|- ( ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( ( S " y ) = z /\ ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
54 |
|
an12 |
|- ( ( ( S " y ) = z /\ ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) <-> ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
55 |
53 54
|
bitri |
|- ( ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
56 |
55
|
exbii |
|- ( E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
57 |
56
|
a1i |
|- ( ph -> ( E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) |
58 |
41 48 57
|
3bitrd |
|- ( ph -> ( ( S " ( R " x ) ) = z <-> E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) |
59 |
58
|
anbi2d |
|- ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ ( S " ( R " x ) ) = z ) <-> ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) ) |
60 |
|
19.42v |
|- ( E. y ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) |
61 |
|
anass |
|- ( ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( x C_ A /\ ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) ) |
62 |
|
ancom |
|- ( ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) <-> ( y C_ B /\ ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) |
63 |
62
|
bianass |
|- ( ( x C_ A /\ ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) ) <-> ( ( x C_ A /\ y C_ B ) /\ ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) |
64 |
|
ancom |
|- ( ( ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) /\ ( R " x ) = y ) <-> ( ( R " x ) = y /\ ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) ) ) |
65 |
|
ancom |
|- ( ( z C_ C /\ y C_ B ) <-> ( y C_ B /\ z C_ C ) ) |
66 |
65
|
anbi1i |
|- ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) <-> ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) |
67 |
66
|
anbi1i |
|- ( ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
68 |
|
biid |
|- ( ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) <-> ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
69 |
68
|
bianass |
|- ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( z C_ C /\ y C_ B ) /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
70 |
|
anass |
|- ( ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( ( z C_ C /\ y C_ B ) /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) |
71 |
69 70
|
bitr4i |
|- ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
72 |
|
anass |
|- ( ( ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) /\ ( R " x ) = y ) <-> ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) ) |
73 |
67 71 72
|
3bitr4i |
|- ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) /\ ( R " x ) = y ) ) |
74 |
|
anass |
|- ( ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) <-> ( ( R " x ) = y /\ ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) ) ) |
75 |
64 73 74
|
3bitr4i |
|- ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) ) |
76 |
75
|
anbi2i |
|- ( ( x C_ A /\ ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) <-> ( x C_ A /\ ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) ) ) |
77 |
|
anass |
|- ( ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) <-> ( ( x C_ A /\ y C_ B ) /\ ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) |
78 |
63 76 77
|
3bitr4i |
|- ( ( x C_ A /\ ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) <-> ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) |
79 |
61 78
|
bitri |
|- ( ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) |
80 |
79
|
exbii |
|- ( E. y ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) |
81 |
60 80
|
bitr3i |
|- ( ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) |
82 |
81
|
a1i |
|- ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) |
83 |
9 59 82
|
3bitrd |
|- ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) |
84 |
83
|
opabbidv |
|- ( ph -> { <. x , z >. | ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) } = { <. x , z >. | E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) } ) |
85 |
|
bj-opabco |
|- ( { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } o. { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) = { <. x , z >. | E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) } |
86 |
84 85
|
eqtr4di |
|- ( ph -> { <. x , z >. | ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) } = ( { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } o. { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) ) |
87 |
5 4
|
coss12d |
|- ( ph -> ( S o. R ) C_ ( ( B X. C ) o. ( A X. B ) ) ) |
88 |
|
bj-xpcossxp |
|- ( ( B X. C ) o. ( A X. B ) ) C_ ( A X. C ) |
89 |
87 88
|
sstrdi |
|- ( ph -> ( S o. R ) C_ ( A X. C ) ) |
90 |
1 3 89
|
bj-imdirval2 |
|- ( ph -> ( ( A ~P_* C ) ` ( S o. R ) ) = { <. x , z >. | ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) } ) |
91 |
2 3 5
|
bj-imdirval2 |
|- ( ph -> ( ( B ~P_* C ) ` S ) = { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } ) |
92 |
1 2 4
|
bj-imdirval2 |
|- ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) |
93 |
91 92
|
coeq12d |
|- ( ph -> ( ( ( B ~P_* C ) ` S ) o. ( ( A ~P_* B ) ` R ) ) = ( { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } o. { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) ) |
94 |
86 90 93
|
3eqtr4d |
|- ( ph -> ( ( A ~P_* C ) ` ( S o. R ) ) = ( ( ( B ~P_* C ) ` S ) o. ( ( A ~P_* B ) ` R ) ) ) |