| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-imdirco.exa |  |-  ( ph -> A e. U ) | 
						
							| 2 |  | bj-imdirco.exb |  |-  ( ph -> B e. V ) | 
						
							| 3 |  | bj-imdirco.exc |  |-  ( ph -> C e. W ) | 
						
							| 4 |  | bj-imdirco.arg1 |  |-  ( ph -> R C_ ( A X. B ) ) | 
						
							| 5 |  | bj-imdirco.arg2 |  |-  ( ph -> S C_ ( B X. C ) ) | 
						
							| 6 |  | imaco |  |-  ( ( S o. R ) " x ) = ( S " ( R " x ) ) | 
						
							| 7 | 6 | eqeq1i |  |-  ( ( ( S o. R ) " x ) = z <-> ( S " ( R " x ) ) = z ) | 
						
							| 8 | 7 | anbi2i |  |-  ( ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) <-> ( ( x C_ A /\ z C_ C ) /\ ( S " ( R " x ) ) = z ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) <-> ( ( x C_ A /\ z C_ C ) /\ ( S " ( R " x ) ) = z ) ) ) | 
						
							| 10 | 1 2 | xpexd |  |-  ( ph -> ( A X. B ) e. _V ) | 
						
							| 11 | 10 4 | ssexd |  |-  ( ph -> R e. _V ) | 
						
							| 12 |  | imaexg |  |-  ( R e. _V -> ( R " x ) e. _V ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( R " x ) e. _V ) | 
						
							| 14 |  | imass1 |  |-  ( R C_ ( A X. B ) -> ( R " x ) C_ ( ( A X. B ) " x ) ) | 
						
							| 15 |  | xpima |  |-  ( ( A X. B ) " x ) = if ( ( A i^i x ) = (/) , (/) , B ) | 
						
							| 16 |  | simpr |  |-  ( ( ( A i^i x ) = (/) /\ u e. (/) ) -> u e. (/) ) | 
						
							| 17 |  | simpr |  |-  ( ( -. ( A i^i x ) = (/) /\ u e. B ) -> u e. B ) | 
						
							| 18 | 16 17 | orim12i |  |-  ( ( ( ( A i^i x ) = (/) /\ u e. (/) ) \/ ( -. ( A i^i x ) = (/) /\ u e. B ) ) -> ( u e. (/) \/ u e. B ) ) | 
						
							| 19 |  | elif |  |-  ( u e. if ( ( A i^i x ) = (/) , (/) , B ) <-> ( ( ( A i^i x ) = (/) /\ u e. (/) ) \/ ( -. ( A i^i x ) = (/) /\ u e. B ) ) ) | 
						
							| 20 |  | elun |  |-  ( u e. ( (/) u. B ) <-> ( u e. (/) \/ u e. B ) ) | 
						
							| 21 | 18 19 20 | 3imtr4i |  |-  ( u e. if ( ( A i^i x ) = (/) , (/) , B ) -> u e. ( (/) u. B ) ) | 
						
							| 22 | 21 | ssriv |  |-  if ( ( A i^i x ) = (/) , (/) , B ) C_ ( (/) u. B ) | 
						
							| 23 |  | 0ss |  |-  (/) C_ B | 
						
							| 24 |  | ssid |  |-  B C_ B | 
						
							| 25 | 23 24 | unssi |  |-  ( (/) u. B ) C_ B | 
						
							| 26 | 22 25 | sstri |  |-  if ( ( A i^i x ) = (/) , (/) , B ) C_ B | 
						
							| 27 | 15 26 | eqsstri |  |-  ( ( A X. B ) " x ) C_ B | 
						
							| 28 | 14 27 | sstrdi |  |-  ( R C_ ( A X. B ) -> ( R " x ) C_ B ) | 
						
							| 29 | 4 28 | syl |  |-  ( ph -> ( R " x ) C_ B ) | 
						
							| 30 |  | eqidd |  |-  ( ph -> ( R " x ) = ( R " x ) ) | 
						
							| 31 | 29 30 | jca |  |-  ( ph -> ( ( R " x ) C_ B /\ ( R " x ) = ( R " x ) ) ) | 
						
							| 32 |  | sseq1 |  |-  ( y = ( R " x ) -> ( y C_ B <-> ( R " x ) C_ B ) ) | 
						
							| 33 |  | eqeq2 |  |-  ( y = ( R " x ) -> ( ( R " x ) = y <-> ( R " x ) = ( R " x ) ) ) | 
						
							| 34 | 32 33 | anbi12d |  |-  ( y = ( R " x ) -> ( ( y C_ B /\ ( R " x ) = y ) <-> ( ( R " x ) C_ B /\ ( R " x ) = ( R " x ) ) ) ) | 
						
							| 35 | 13 31 34 | spcedv |  |-  ( ph -> E. y ( y C_ B /\ ( R " x ) = y ) ) | 
						
							| 36 | 35 | biantrurd |  |-  ( ph -> ( ( S " ( R " x ) ) = z <-> ( E. y ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) ) ) | 
						
							| 37 |  | 19.41v |  |-  ( E. y ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> ( E. y ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) ) | 
						
							| 38 |  | anass |  |-  ( ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) | 
						
							| 39 | 38 | exbii |  |-  ( E. y ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) | 
						
							| 40 | 37 39 | bitr3i |  |-  ( ( E. y ( y C_ B /\ ( R " x ) = y ) /\ ( S " ( R " x ) ) = z ) <-> E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) | 
						
							| 41 | 36 40 | bitrdi |  |-  ( ph -> ( ( S " ( R " x ) ) = z <-> E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) ) ) | 
						
							| 42 |  | imaeq2 |  |-  ( ( R " x ) = y -> ( S " ( R " x ) ) = ( S " y ) ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( ( R " x ) = y -> ( ( S " ( R " x ) ) = z <-> ( S " y ) = z ) ) | 
						
							| 44 | 43 | pm5.32i |  |-  ( ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) <-> ( ( R " x ) = y /\ ( S " y ) = z ) ) | 
						
							| 45 | 44 | bianass |  |-  ( ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> ( ( y C_ B /\ ( R " x ) = y ) /\ ( S " y ) = z ) ) | 
						
							| 46 | 45 | biancomi |  |-  ( ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 47 | 46 | exbii |  |-  ( E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 48 | 47 | a1i |  |-  ( ph -> ( E. y ( y C_ B /\ ( ( R " x ) = y /\ ( S " ( R " x ) ) = z ) ) <-> E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 49 |  | pm4.24 |  |-  ( y C_ B <-> ( y C_ B /\ y C_ B ) ) | 
						
							| 50 | 49 | anbi1i |  |-  ( ( y C_ B /\ ( R " x ) = y ) <-> ( ( y C_ B /\ y C_ B ) /\ ( R " x ) = y ) ) | 
						
							| 51 |  | anass |  |-  ( ( ( y C_ B /\ y C_ B ) /\ ( R " x ) = y ) <-> ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 52 | 50 51 | bitri |  |-  ( ( y C_ B /\ ( R " x ) = y ) <-> ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 53 | 52 | anbi2i |  |-  ( ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( ( S " y ) = z /\ ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 54 |  | an12 |  |-  ( ( ( S " y ) = z /\ ( y C_ B /\ ( y C_ B /\ ( R " x ) = y ) ) ) <-> ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 55 | 53 54 | bitri |  |-  ( ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 56 | 55 | exbii |  |-  ( E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 57 | 56 | a1i |  |-  ( ph -> ( E. y ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) <-> E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) | 
						
							| 58 | 41 48 57 | 3bitrd |  |-  ( ph -> ( ( S " ( R " x ) ) = z <-> E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) | 
						
							| 59 | 58 | anbi2d |  |-  ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ ( S " ( R " x ) ) = z ) <-> ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) ) | 
						
							| 60 |  | 19.42v |  |-  ( E. y ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) | 
						
							| 61 |  | anass |  |-  ( ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( x C_ A /\ ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) ) | 
						
							| 62 |  | ancom |  |-  ( ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) <-> ( y C_ B /\ ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) | 
						
							| 63 | 62 | bianass |  |-  ( ( x C_ A /\ ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) ) <-> ( ( x C_ A /\ y C_ B ) /\ ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) | 
						
							| 64 |  | ancom |  |-  ( ( ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) /\ ( R " x ) = y ) <-> ( ( R " x ) = y /\ ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) ) ) | 
						
							| 65 |  | ancom |  |-  ( ( z C_ C /\ y C_ B ) <-> ( y C_ B /\ z C_ C ) ) | 
						
							| 66 | 65 | anbi1i |  |-  ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) <-> ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) | 
						
							| 67 | 66 | anbi1i |  |-  ( ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 68 |  | biid |  |-  ( ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) <-> ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 69 | 68 | bianass |  |-  ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( z C_ C /\ y C_ B ) /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 70 |  | anass |  |-  ( ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) <-> ( ( z C_ C /\ y C_ B ) /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) | 
						
							| 71 | 69 70 | bitr4i |  |-  ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( z C_ C /\ y C_ B ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 72 |  | anass |  |-  ( ( ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) /\ ( R " x ) = y ) <-> ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ ( y C_ B /\ ( R " x ) = y ) ) ) | 
						
							| 73 | 67 71 72 | 3bitr4i |  |-  ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) /\ ( R " x ) = y ) ) | 
						
							| 74 |  | anass |  |-  ( ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) <-> ( ( R " x ) = y /\ ( ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) /\ y C_ B ) ) ) | 
						
							| 75 | 64 73 74 | 3bitr4i |  |-  ( ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) ) | 
						
							| 76 | 75 | anbi2i |  |-  ( ( x C_ A /\ ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) <-> ( x C_ A /\ ( ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) /\ y C_ B ) ) ) | 
						
							| 77 |  | anass |  |-  ( ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) <-> ( ( x C_ A /\ y C_ B ) /\ ( ( R " x ) = y /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) | 
						
							| 78 | 63 76 77 | 3bitr4i |  |-  ( ( x C_ A /\ ( z C_ C /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) ) <-> ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) | 
						
							| 79 | 61 78 | bitri |  |-  ( ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) | 
						
							| 80 | 79 | exbii |  |-  ( E. y ( ( x C_ A /\ z C_ C ) /\ ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) | 
						
							| 81 | 60 80 | bitr3i |  |-  ( ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) | 
						
							| 82 | 81 | a1i |  |-  ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ E. y ( y C_ B /\ ( ( S " y ) = z /\ ( y C_ B /\ ( R " x ) = y ) ) ) ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) | 
						
							| 83 | 9 59 82 | 3bitrd |  |-  ( ph -> ( ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) <-> E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) ) ) | 
						
							| 84 | 83 | opabbidv |  |-  ( ph -> { <. x , z >. | ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) } = { <. x , z >. | E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) } ) | 
						
							| 85 |  | bj-opabco |  |-  ( { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } o. { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) = { <. x , z >. | E. y ( ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) /\ ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) ) } | 
						
							| 86 | 84 85 | eqtr4di |  |-  ( ph -> { <. x , z >. | ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) } = ( { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } o. { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) ) | 
						
							| 87 | 5 4 | coss12d |  |-  ( ph -> ( S o. R ) C_ ( ( B X. C ) o. ( A X. B ) ) ) | 
						
							| 88 |  | bj-xpcossxp |  |-  ( ( B X. C ) o. ( A X. B ) ) C_ ( A X. C ) | 
						
							| 89 | 87 88 | sstrdi |  |-  ( ph -> ( S o. R ) C_ ( A X. C ) ) | 
						
							| 90 | 1 3 89 | bj-imdirval2 |  |-  ( ph -> ( ( A ~P_* C ) ` ( S o. R ) ) = { <. x , z >. | ( ( x C_ A /\ z C_ C ) /\ ( ( S o. R ) " x ) = z ) } ) | 
						
							| 91 | 2 3 5 | bj-imdirval2 |  |-  ( ph -> ( ( B ~P_* C ) ` S ) = { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } ) | 
						
							| 92 | 1 2 4 | bj-imdirval2 |  |-  ( ph -> ( ( A ~P_* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) | 
						
							| 93 | 91 92 | coeq12d |  |-  ( ph -> ( ( ( B ~P_* C ) ` S ) o. ( ( A ~P_* B ) ` R ) ) = ( { <. y , z >. | ( ( y C_ B /\ z C_ C ) /\ ( S " y ) = z ) } o. { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ ( R " x ) = y ) } ) ) | 
						
							| 94 | 86 90 93 | 3eqtr4d |  |-  ( ph -> ( ( A ~P_* C ) ` ( S o. R ) ) = ( ( ( B ~P_* C ) ` S ) o. ( ( A ~P_* B ) ` R ) ) ) |