| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( ( C^n ` CC ) ` N ) ) |
| 2 |
|
ssid |
|- CC C_ CC |
| 3 |
|
elfvdm |
|- ( F e. ( ( C^n ` CC ) ` N ) -> N e. dom ( C^n ` CC ) ) |
| 4 |
3
|
adantl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. dom ( C^n ` CC ) ) |
| 5 |
|
fncpn |
|- ( CC C_ CC -> ( C^n ` CC ) Fn NN0 ) |
| 6 |
2 5
|
ax-mp |
|- ( C^n ` CC ) Fn NN0 |
| 7 |
|
fndm |
|- ( ( C^n ` CC ) Fn NN0 -> dom ( C^n ` CC ) = NN0 ) |
| 8 |
6 7
|
mp1i |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( C^n ` CC ) = NN0 ) |
| 9 |
4 8
|
eleqtrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. NN0 ) |
| 10 |
|
elcpn |
|- ( ( CC C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
| 11 |
2 9 10
|
sylancr |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
| 12 |
1 11
|
mpbid |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) |
| 13 |
12
|
simpld |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( CC ^pm CC ) ) |
| 14 |
|
pmresg |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
| 15 |
13 14
|
syldan |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
| 16 |
|
simpl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> S e. { RR , CC } ) |
| 17 |
12
|
simprd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) |
| 18 |
|
cncff |
|- ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) |
| 19 |
17 18
|
syl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) |
| 20 |
19
|
fdmd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( ( CC Dn F ) ` N ) = dom F ) |
| 21 |
|
dvnres |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) /\ dom ( ( CC Dn F ) ` N ) = dom F ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 22 |
16 13 9 20 21
|
syl31anc |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 23 |
|
resres |
|- ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) |
| 24 |
|
rescom |
|- ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) |
| 25 |
23 24
|
eqtr3i |
|- ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) |
| 26 |
|
ffn |
|- ( ( ( CC Dn F ) ` N ) : dom F --> CC -> ( ( CC Dn F ) ` N ) Fn dom F ) |
| 27 |
|
fnresdm |
|- ( ( ( CC Dn F ) ` N ) Fn dom F -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) |
| 28 |
19 26 27
|
3syl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) |
| 29 |
28
|
reseq1d |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 30 |
25 29
|
eqtrid |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 31 |
|
inss2 |
|- ( S i^i dom F ) C_ dom F |
| 32 |
|
rescncf |
|- ( ( S i^i dom F ) C_ dom F -> ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) ) |
| 33 |
31 17 32
|
mpsyl |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) |
| 34 |
30 33
|
eqeltrrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( ( S i^i dom F ) -cn-> CC ) ) |
| 35 |
|
dmres |
|- dom ( F |` S ) = ( S i^i dom F ) |
| 36 |
35
|
oveq1i |
|- ( dom ( F |` S ) -cn-> CC ) = ( ( S i^i dom F ) -cn-> CC ) |
| 37 |
34 36
|
eleqtrrdi |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( dom ( F |` S ) -cn-> CC ) ) |
| 38 |
22 37
|
eqeltrd |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) |
| 39 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 40 |
|
elcpn |
|- ( ( S C_ CC /\ N e. NN0 ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) |
| 41 |
39 9 40
|
syl2an2r |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) |
| 42 |
15 38 41
|
mpbir2and |
|- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( ( C^n ` S ) ` N ) ) |