Step |
Hyp |
Ref |
Expression |
1 |
|
crctcshwlkn0lem.s |
|- ( ph -> S e. ( 1 ..^ N ) ) |
2 |
|
crctcshwlkn0lem.q |
|- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
3 |
|
crctcshwlkn0lem.h |
|- H = ( F cyclShift S ) |
4 |
|
crctcshwlkn0lem.n |
|- N = ( # ` F ) |
5 |
|
crctcshwlkn0lem.f |
|- ( ph -> F e. Word A ) |
6 |
|
crctcshwlkn0lem.p |
|- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
7 |
|
crctcshwlkn0lem.e |
|- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
8 |
|
oveq1 |
|- ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) |
9 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
10 |
8 9
|
eqtrdi |
|- ( i = 0 -> ( i + 1 ) = 1 ) |
11 |
|
wkslem2 |
|- ( ( i = 0 /\ ( i + 1 ) = 1 ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
12 |
10 11
|
mpdan |
|- ( i = 0 -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
13 |
|
elfzo1 |
|- ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) |
14 |
|
simp2 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. NN ) |
15 |
13 14
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> N e. NN ) |
16 |
1 15
|
syl |
|- ( ph -> N e. NN ) |
17 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
18 |
16 17
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ N ) ) |
19 |
12 6 18
|
rspcdva |
|- ( ph -> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
20 |
|
eqeq1 |
|- ( ( P ` N ) = ( P ` 0 ) -> ( ( P ` N ) = ( P ` 1 ) <-> ( P ` 0 ) = ( P ` 1 ) ) ) |
21 |
|
sneq |
|- ( ( P ` N ) = ( P ` 0 ) -> { ( P ` N ) } = { ( P ` 0 ) } ) |
22 |
21
|
eqeq2d |
|- ( ( P ` N ) = ( P ` 0 ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` N ) } <-> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } ) ) |
23 |
|
preq1 |
|- ( ( P ` N ) = ( P ` 0 ) -> { ( P ` N ) , ( P ` 1 ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
24 |
23
|
sseq1d |
|- ( ( P ` N ) = ( P ` 0 ) -> ( { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
25 |
20 22 24
|
ifpbi123d |
|- ( ( P ` N ) = ( P ` 0 ) -> ( if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
26 |
7 25
|
syl |
|- ( ph -> ( if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
27 |
19 26
|
mpbird |
|- ( ph -> if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
28 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
29 |
|
nncn |
|- ( S e. NN -> S e. CC ) |
30 |
|
npcan |
|- ( ( N e. CC /\ S e. CC ) -> ( ( N - S ) + S ) = N ) |
31 |
28 29 30
|
syl2anr |
|- ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) + S ) = N ) |
32 |
|
simpr |
|- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( ( N - S ) + S ) = N ) |
33 |
|
oveq1 |
|- ( ( ( N - S ) + S ) = N -> ( ( ( N - S ) + S ) mod ( # ` F ) ) = ( N mod ( # ` F ) ) ) |
34 |
4
|
eqcomi |
|- ( # ` F ) = N |
35 |
34
|
a1i |
|- ( ( S e. NN /\ N e. NN ) -> ( # ` F ) = N ) |
36 |
35
|
oveq2d |
|- ( ( S e. NN /\ N e. NN ) -> ( N mod ( # ` F ) ) = ( N mod N ) ) |
37 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
38 |
|
modid0 |
|- ( N e. RR+ -> ( N mod N ) = 0 ) |
39 |
37 38
|
syl |
|- ( N e. NN -> ( N mod N ) = 0 ) |
40 |
39
|
adantl |
|- ( ( S e. NN /\ N e. NN ) -> ( N mod N ) = 0 ) |
41 |
36 40
|
eqtrd |
|- ( ( S e. NN /\ N e. NN ) -> ( N mod ( # ` F ) ) = 0 ) |
42 |
33 41
|
sylan9eqr |
|- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 ) |
43 |
|
simpl |
|- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( S e. NN /\ N e. NN ) ) |
44 |
32 42 43
|
3jca |
|- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
45 |
31 44
|
mpdan |
|- ( ( S e. NN /\ N e. NN ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
46 |
45
|
3adant3 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
47 |
13 46
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
48 |
|
simp1 |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( N - S ) + S ) = N ) |
49 |
48
|
fveq2d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( P ` ( ( N - S ) + S ) ) = ( P ` N ) ) |
50 |
49
|
eqeq1d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) <-> ( P ` N ) = ( P ` 1 ) ) ) |
51 |
|
simp2 |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 ) |
52 |
51
|
fveq2d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) = ( F ` 0 ) ) |
53 |
52
|
fveq2d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = ( I ` ( F ` 0 ) ) ) |
54 |
49
|
sneqd |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> { ( P ` ( ( N - S ) + S ) ) } = { ( P ` N ) } ) |
55 |
53 54
|
eqeq12d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } <-> ( I ` ( F ` 0 ) ) = { ( P ` N ) } ) ) |
56 |
49
|
preq1d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } = { ( P ` N ) , ( P ` 1 ) } ) |
57 |
56 53
|
sseq12d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) <-> { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
58 |
50 55 57
|
ifpbi123d |
|- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) <-> if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
59 |
1 47 58
|
3syl |
|- ( ph -> ( if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) <-> if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
60 |
27 59
|
mpbird |
|- ( ph -> if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) |
61 |
|
nnsub |
|- ( ( S e. NN /\ N e. NN ) -> ( S < N <-> ( N - S ) e. NN ) ) |
62 |
61
|
biimp3a |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN ) |
63 |
62
|
nnnn0d |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN0 ) |
64 |
13 63
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> ( N - S ) e. NN0 ) |
65 |
1 64
|
syl |
|- ( ph -> ( N - S ) e. NN0 ) |
66 |
|
nn0fz0 |
|- ( ( N - S ) e. NN0 <-> ( N - S ) e. ( 0 ... ( N - S ) ) ) |
67 |
65 66
|
sylib |
|- ( ph -> ( N - S ) e. ( 0 ... ( N - S ) ) ) |
68 |
1 2
|
crctcshwlkn0lem2 |
|- ( ( ph /\ ( N - S ) e. ( 0 ... ( N - S ) ) ) -> ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) ) |
69 |
67 68
|
mpdan |
|- ( ph -> ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) ) |
70 |
|
elfzoel2 |
|- ( S e. ( 1 ..^ N ) -> N e. ZZ ) |
71 |
|
elfzoelz |
|- ( S e. ( 1 ..^ N ) -> S e. ZZ ) |
72 |
70 71
|
zsubcld |
|- ( S e. ( 1 ..^ N ) -> ( N - S ) e. ZZ ) |
73 |
72
|
peano2zd |
|- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. ZZ ) |
74 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
75 |
74
|
anim1i |
|- ( ( N e. NN /\ S e. NN ) -> ( N e. RR /\ S e. NN ) ) |
76 |
75
|
ancoms |
|- ( ( S e. NN /\ N e. NN ) -> ( N e. RR /\ S e. NN ) ) |
77 |
|
crctcshwlkn0lem1 |
|- ( ( N e. RR /\ S e. NN ) -> ( ( N - S ) + 1 ) <_ N ) |
78 |
76 77
|
syl |
|- ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) + 1 ) <_ N ) |
79 |
78
|
3adant3 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) <_ N ) |
80 |
13 79
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) <_ N ) |
81 |
73 70 80
|
3jca |
|- ( S e. ( 1 ..^ N ) -> ( ( ( N - S ) + 1 ) e. ZZ /\ N e. ZZ /\ ( ( N - S ) + 1 ) <_ N ) ) |
82 |
1 81
|
syl |
|- ( ph -> ( ( ( N - S ) + 1 ) e. ZZ /\ N e. ZZ /\ ( ( N - S ) + 1 ) <_ N ) ) |
83 |
|
eluz2 |
|- ( N e. ( ZZ>= ` ( ( N - S ) + 1 ) ) <-> ( ( ( N - S ) + 1 ) e. ZZ /\ N e. ZZ /\ ( ( N - S ) + 1 ) <_ N ) ) |
84 |
82 83
|
sylibr |
|- ( ph -> N e. ( ZZ>= ` ( ( N - S ) + 1 ) ) ) |
85 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> ( ( N - S ) + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) |
86 |
84 85
|
syl |
|- ( ph -> ( ( N - S ) + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) |
87 |
1 2
|
crctcshwlkn0lem3 |
|- ( ( ph /\ ( ( N - S ) + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` ( ( ( ( N - S ) + 1 ) + S ) - N ) ) ) |
88 |
86 87
|
mpdan |
|- ( ph -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` ( ( ( ( N - S ) + 1 ) + S ) - N ) ) ) |
89 |
|
subcl |
|- ( ( N e. CC /\ S e. CC ) -> ( N - S ) e. CC ) |
90 |
89
|
ancoms |
|- ( ( S e. CC /\ N e. CC ) -> ( N - S ) e. CC ) |
91 |
|
ax-1cn |
|- 1 e. CC |
92 |
|
pncan2 |
|- ( ( ( N - S ) e. CC /\ 1 e. CC ) -> ( ( ( N - S ) + 1 ) - ( N - S ) ) = 1 ) |
93 |
92
|
eqcomd |
|- ( ( ( N - S ) e. CC /\ 1 e. CC ) -> 1 = ( ( ( N - S ) + 1 ) - ( N - S ) ) ) |
94 |
90 91 93
|
sylancl |
|- ( ( S e. CC /\ N e. CC ) -> 1 = ( ( ( N - S ) + 1 ) - ( N - S ) ) ) |
95 |
|
peano2cn |
|- ( ( N - S ) e. CC -> ( ( N - S ) + 1 ) e. CC ) |
96 |
90 95
|
syl |
|- ( ( S e. CC /\ N e. CC ) -> ( ( N - S ) + 1 ) e. CC ) |
97 |
|
simpr |
|- ( ( S e. CC /\ N e. CC ) -> N e. CC ) |
98 |
|
simpl |
|- ( ( S e. CC /\ N e. CC ) -> S e. CC ) |
99 |
96 97 98
|
subsub3d |
|- ( ( S e. CC /\ N e. CC ) -> ( ( ( N - S ) + 1 ) - ( N - S ) ) = ( ( ( ( N - S ) + 1 ) + S ) - N ) ) |
100 |
94 99
|
eqtr2d |
|- ( ( S e. CC /\ N e. CC ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
101 |
29 28 100
|
syl2an |
|- ( ( S e. NN /\ N e. NN ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
102 |
101
|
3adant3 |
|- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
103 |
13 102
|
sylbi |
|- ( S e. ( 1 ..^ N ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
104 |
1 103
|
syl |
|- ( ph -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
105 |
104
|
fveq2d |
|- ( ph -> ( P ` ( ( ( ( N - S ) + 1 ) + S ) - N ) ) = ( P ` 1 ) ) |
106 |
88 105
|
eqtrd |
|- ( ph -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) ) |
107 |
3
|
fveq1i |
|- ( H ` ( N - S ) ) = ( ( F cyclShift S ) ` ( N - S ) ) |
108 |
5
|
adantr |
|- ( ( ph /\ S e. ( 1 ..^ N ) ) -> F e. Word A ) |
109 |
71
|
adantl |
|- ( ( ph /\ S e. ( 1 ..^ N ) ) -> S e. ZZ ) |
110 |
|
elfzofz |
|- ( S e. ( 1 ..^ N ) -> S e. ( 1 ... N ) ) |
111 |
|
ubmelfzo |
|- ( S e. ( 1 ... N ) -> ( N - S ) e. ( 0 ..^ N ) ) |
112 |
110 111
|
syl |
|- ( S e. ( 1 ..^ N ) -> ( N - S ) e. ( 0 ..^ N ) ) |
113 |
112
|
adantl |
|- ( ( ph /\ S e. ( 1 ..^ N ) ) -> ( N - S ) e. ( 0 ..^ N ) ) |
114 |
34
|
oveq2i |
|- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) |
115 |
113 114
|
eleqtrrdi |
|- ( ( ph /\ S e. ( 1 ..^ N ) ) -> ( N - S ) e. ( 0 ..^ ( # ` F ) ) ) |
116 |
|
cshwidxmod |
|- ( ( F e. Word A /\ S e. ZZ /\ ( N - S ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
117 |
108 109 115 116
|
syl3anc |
|- ( ( ph /\ S e. ( 1 ..^ N ) ) -> ( ( F cyclShift S ) ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
118 |
1 117
|
mpdan |
|- ( ph -> ( ( F cyclShift S ) ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
119 |
107 118
|
eqtrid |
|- ( ph -> ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
120 |
|
simp1 |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) ) |
121 |
|
simp2 |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) ) |
122 |
120 121
|
eqeq12d |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) <-> ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) ) ) |
123 |
|
simp3 |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
124 |
123
|
fveq2d |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( I ` ( H ` ( N - S ) ) ) = ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) |
125 |
120
|
sneqd |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> { ( Q ` ( N - S ) ) } = { ( P ` ( ( N - S ) + S ) ) } ) |
126 |
124 125
|
eqeq12d |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } <-> ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } ) ) |
127 |
120 121
|
preq12d |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } = { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } ) |
128 |
127 124
|
sseq12d |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) <-> { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) |
129 |
122 126 128
|
ifpbi123d |
|- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) <-> if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) ) |
130 |
69 106 119 129
|
syl3anc |
|- ( ph -> ( if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) <-> if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) ) |
131 |
60 130
|
mpbird |
|- ( ph -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
132 |
131
|
adantr |
|- ( ( ph /\ J = ( N - S ) ) -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
133 |
|
wkslem1 |
|- ( J = ( N - S ) -> ( if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) ) |
134 |
133
|
adantl |
|- ( ( ph /\ J = ( N - S ) ) -> ( if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) ) |
135 |
132 134
|
mpbird |
|- ( ( ph /\ J = ( N - S ) ) -> if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) ) |