| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
|
simp11 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
| 7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
| 8 |
|
simp21 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
| 9 |
|
simp22 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
| 10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 12 |
|
simp31 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
| 13 |
|
simp32 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
| 14 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 15 |
6 12 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 16 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
| 17 |
7 11 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
| 18 |
|
simp23 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
| 19 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 20 |
6 9 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 21 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
| 22 |
7 11 15 21
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
| 23 |
|
simp12 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( Q .\/ R ) ) |
| 24 |
5 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 25 |
9 24
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) ) |
| 26 |
5 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 27 |
18 26
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. ( Base ` K ) ) |
| 28 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> Q .<_ ( Q .\/ R ) ) |
| 29 |
7 25 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ R ) ) |
| 30 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 31 |
8 30
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
| 32 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( Q .\/ R ) /\ Q .<_ ( Q .\/ R ) ) <-> ( P .\/ Q ) .<_ ( Q .\/ R ) ) ) |
| 33 |
7 31 25 20 32
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .<_ ( Q .\/ R ) /\ Q .<_ ( Q .\/ R ) ) <-> ( P .\/ Q ) .<_ ( Q .\/ R ) ) ) |
| 34 |
23 29 33
|
mpbi2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( Q .\/ R ) ) |
| 35 |
5 1 7 17 11 20 22 34
|
lattrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( Q .\/ R ) ) |
| 36 |
5 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
| 37 |
13 36
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. ( Base ` K ) ) |
| 38 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
| 39 |
7 11 37 38
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
| 40 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
| 41 |
7 39 15 40
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
| 42 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
| 43 |
6 18 8 42
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
| 44 |
|
simp33 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
| 45 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
| 46 |
6 44 12 45
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
| 47 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
| 48 |
7 43 46 47
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
| 49 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 50 |
44 49
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
| 51 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) ) |
| 52 |
7 48 50 51
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) ) |
| 53 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) e. ( Base ` K ) ) |
| 54 |
7 52 37 53
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) e. ( Base ` K ) ) |
| 55 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
| 56 |
7 11 37 55
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
| 57 |
5 1 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) ) |
| 58 |
7 11 39 15 57
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) ) |
| 59 |
56 58
|
mpd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) |
| 60 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> T .<_ ( ( P .\/ Q ) .\/ T ) ) |
| 61 |
7 11 37 60
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( ( P .\/ Q ) .\/ T ) ) |
| 62 |
5 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( S e. A /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ T .<_ ( ( P .\/ Q ) .\/ T ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) |
| 63 |
6 12 39 37 61 62
|
syl131anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) |
| 64 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
| 65 |
6 9 13 64
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
| 66 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 67 |
6 8 12 66
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 68 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
| 69 |
7 65 67 68
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
| 70 |
|
simp13 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
| 71 |
69 70
|
eqbrtrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) ) |
| 72 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 73 |
7 65 67 72
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 74 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 75 |
6 18 44 74
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 76 |
5 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( R .\/ U ) ) ) ) |
| 77 |
7 73 75 31 76
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( R .\/ U ) ) ) ) |
| 78 |
71 77
|
mpd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( R .\/ U ) ) ) |
| 79 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 80 |
12 79
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
| 81 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> P .<_ ( P .\/ S ) ) |
| 82 |
7 31 80 81
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ S ) ) |
| 83 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
| 84 |
6 8 65 67 82 83
|
syl131anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
| 85 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ R e. A /\ U e. A ) ) -> ( ( P .\/ R ) .\/ U ) = ( P .\/ ( R .\/ U ) ) ) |
| 86 |
6 8 18 44 85
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ R ) .\/ U ) = ( P .\/ ( R .\/ U ) ) ) |
| 87 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) ) |
| 88 |
6 8 18 87
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ R ) = ( R .\/ P ) ) |
| 89 |
88
|
oveq1d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ R ) .\/ U ) = ( ( R .\/ P ) .\/ U ) ) |
| 90 |
86 89
|
eqtr3d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ U ) ) = ( ( R .\/ P ) .\/ U ) ) |
| 91 |
78 84 90
|
3brtr3d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) .<_ ( ( R .\/ P ) .\/ U ) ) |
| 92 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( U .\/ S ) ) |
| 93 |
7 50 80 92
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( U .\/ S ) ) |
| 94 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 95 |
7 31 65 94
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 96 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 97 |
7 95 67 96
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 98 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( R .\/ P ) .\/ U ) e. ( Base ` K ) ) |
| 99 |
7 43 50 98
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) .\/ U ) e. ( Base ` K ) ) |
| 100 |
5 1 3
|
latmlem12 |
|- ( ( K e. Lat /\ ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) .\/ U ) e. ( Base ` K ) ) /\ ( S e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) .<_ ( ( R .\/ P ) .\/ U ) /\ S .<_ ( U .\/ S ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) .<_ ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) ) |
| 101 |
7 97 99 80 46 100
|
syl122anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) .<_ ( ( R .\/ P ) .\/ U ) /\ S .<_ ( U .\/ S ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) .<_ ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) ) |
| 102 |
91 93 101
|
mp2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) .<_ ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) |
| 103 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 104 |
6 103
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. OL ) |
| 105 |
5 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( ( P .\/ S ) ./\ S ) ) ) |
| 106 |
104 95 67 80 105
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( ( P .\/ S ) ./\ S ) ) ) |
| 107 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ T ) = ( P .\/ ( Q .\/ T ) ) ) |
| 108 |
6 8 9 13 107
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ T ) = ( P .\/ ( Q .\/ T ) ) ) |
| 109 |
108
|
eqcomd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ T ) ) = ( ( P .\/ Q ) .\/ T ) ) |
| 110 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( P .\/ S ) ) |
| 111 |
7 31 80 110
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( P .\/ S ) ) |
| 112 |
5 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( S .<_ ( P .\/ S ) <-> ( ( P .\/ S ) ./\ S ) = S ) ) |
| 113 |
7 80 67 112
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .<_ ( P .\/ S ) <-> ( ( P .\/ S ) ./\ S ) = S ) ) |
| 114 |
111 113
|
mpbid |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ S ) = S ) |
| 115 |
109 114
|
oveq12d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( ( P .\/ S ) ./\ S ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ S ) ) |
| 116 |
106 115
|
eqtr2d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) = ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) ) |
| 117 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> U .<_ ( U .\/ S ) ) |
| 118 |
7 50 80 117
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( U .\/ S ) ) |
| 119 |
5 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) /\ U .<_ ( U .\/ S ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) = ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) |
| 120 |
6 44 43 46 118 119
|
syl131anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) = ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) |
| 121 |
102 116 120
|
3brtr4d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) ) |
| 122 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) ) |
| 123 |
7 39 80 122
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) ) |
| 124 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) /\ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) ) |
| 125 |
7 123 52 37 124
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) ) |
| 126 |
121 125
|
mpd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) |
| 127 |
63 126
|
eqbrtrrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) |
| 128 |
5 1 7 17 41 54 59 127
|
lattrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) |
| 129 |
5 2
|
latj31 |
|- ( ( K e. Lat /\ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) = ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 130 |
7 48 50 37 129
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) = ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 131 |
128 130
|
breqtrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 132 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 133 |
6 13 44 132
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 134 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
| 135 |
7 133 48 134
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
| 136 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) |
| 137 |
7 17 20 135 136
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) |
| 138 |
35 131 137
|
mpbi2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
| 139 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( R .\/ P ) ) |
| 140 |
7 43 46 139
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( R .\/ P ) ) |
| 141 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> R .<_ ( Q .\/ R ) ) |
| 142 |
7 25 27 141
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R .<_ ( Q .\/ R ) ) |
| 143 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( Q .\/ R ) /\ P .<_ ( Q .\/ R ) ) <-> ( R .\/ P ) .<_ ( Q .\/ R ) ) ) |
| 144 |
7 27 31 20 143
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .<_ ( Q .\/ R ) /\ P .<_ ( Q .\/ R ) ) <-> ( R .\/ P ) .<_ ( Q .\/ R ) ) ) |
| 145 |
142 23 144
|
mpbi2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) .<_ ( Q .\/ R ) ) |
| 146 |
5 1 7 48 43 20 140 145
|
lattrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( Q .\/ R ) ) |
| 147 |
5 1 2 3 4
|
llnmod2i2 |
|- ( ( ( K e. HL /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) /\ ( T e. A /\ U e. A ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( Q .\/ R ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
| 148 |
6 20 48 13 44 146 147
|
syl321anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
| 149 |
138 148
|
breqtrrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |