Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
8 |
|
simp21 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
9 |
|
simp22 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
12 |
|
simp31 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
13 |
|
simp32 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
14 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
15 |
6 12 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
16 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
17 |
7 11 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
18 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
19 |
12 18
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
20 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) |
21 |
7 11 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) |
22 |
5 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
23 |
13 22
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. ( Base ` K ) ) |
24 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) |
25 |
7 21 23 24
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) |
26 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) e. ( Base ` K ) ) |
27 |
7 25 19 26
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) e. ( Base ` K ) ) |
28 |
5 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
29 |
9 28
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) ) |
30 |
|
simp33 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
31 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
32 |
6 13 30 31
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
33 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
34 |
7 29 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
35 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
36 |
6 30 12 35
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
37 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) ) |
38 |
7 34 36 37
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) ) |
39 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) |
40 |
7 11 19 39
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) |
41 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ S e. A ) -> ( T .\/ S ) e. ( Base ` K ) ) |
42 |
6 13 12 41
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ S ) e. ( Base ` K ) ) |
43 |
5 1 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( T .\/ S ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) ) |
44 |
7 11 21 42 43
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) ) |
45 |
40 44
|
mpd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) |
46 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) = ( T .\/ S ) ) |
47 |
6 12 13 46
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) = ( T .\/ S ) ) |
48 |
47
|
oveq2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( P .\/ Q ) ./\ ( T .\/ S ) ) ) |
49 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) ) |
50 |
7 11 19 49
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) ) |
51 |
5 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( T e. A /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) /\ S .<_ ( ( P .\/ Q ) .\/ S ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) |
52 |
6 13 21 19 50 51
|
syl131anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) |
53 |
45 48 52
|
3brtr4d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) ) |
54 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
55 |
6 54
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. OL ) |
56 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
57 |
6 8 12 56
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
58 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
59 |
7 29 57 58
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
60 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
61 |
6 9 13 60
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
62 |
5 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) ) |
63 |
55 59 61 23 62
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) ) |
64 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ S ) = ( P .\/ ( Q .\/ S ) ) ) |
65 |
6 8 9 12 64
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ S ) = ( P .\/ ( Q .\/ S ) ) ) |
66 |
2 4
|
hlatj12 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> ( P .\/ ( Q .\/ S ) ) = ( Q .\/ ( P .\/ S ) ) ) |
67 |
6 8 9 12 66
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ S ) ) = ( Q .\/ ( P .\/ S ) ) ) |
68 |
65 67
|
eqtr2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( P .\/ S ) ) = ( ( P .\/ Q ) .\/ S ) ) |
69 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> T .<_ ( Q .\/ T ) ) |
70 |
6 9 13 69
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( Q .\/ T ) ) |
71 |
5 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ T e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( T .<_ ( Q .\/ T ) <-> ( ( Q .\/ T ) ./\ T ) = T ) ) |
72 |
7 23 61 71
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .<_ ( Q .\/ T ) <-> ( ( Q .\/ T ) ./\ T ) = T ) ) |
73 |
70 72
|
mpbid |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ T ) = T ) |
74 |
68 73
|
oveq12d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) |
75 |
63 74
|
eqtr2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) = ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) ) |
76 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> Q .<_ ( Q .\/ T ) ) |
77 |
6 9 13 76
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ T ) ) |
78 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) /\ Q .<_ ( Q .\/ T ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ) |
79 |
6 9 57 61 77 78
|
syl131anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ) |
80 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ U e. A /\ Q e. A ) -> Q .<_ ( U .\/ Q ) ) |
81 |
6 30 9 80
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( U .\/ Q ) ) |
82 |
|
simp13 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
83 |
|
simp12 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q = R ) |
84 |
83
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ U ) = ( R .\/ U ) ) |
85 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ U e. A ) -> ( Q .\/ U ) = ( U .\/ Q ) ) |
86 |
6 9 30 85
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ U ) = ( U .\/ Q ) ) |
87 |
84 86
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) = ( U .\/ Q ) ) |
88 |
82 87
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) |
89 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
90 |
7 57 61 89
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
91 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ Q e. A ) -> ( U .\/ Q ) e. ( Base ` K ) ) |
92 |
6 30 9 91
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ Q ) e. ( Base ` K ) ) |
93 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( U .\/ Q ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( U .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) <-> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) ) |
94 |
7 29 90 92 93
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .<_ ( U .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) <-> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) ) |
95 |
81 88 94
|
mpbi2and |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) |
96 |
79 95
|
eqbrtrrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) |
97 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> T .<_ ( T .\/ U ) ) |
98 |
6 13 30 97
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( T .\/ U ) ) |
99 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
100 |
7 59 61 99
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
101 |
5 1 3
|
latmlem12 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( U .\/ Q ) e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) ) -> ( ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) /\ T .<_ ( T .\/ U ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) ) |
102 |
7 100 92 23 32 101
|
syl122anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) /\ T .<_ ( T .\/ U ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) ) |
103 |
96 98 102
|
mp2and |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
104 |
75 103
|
eqbrtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
105 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> U .<_ ( T .\/ U ) ) |
106 |
6 13 30 105
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( T .\/ U ) ) |
107 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( U e. A /\ Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) /\ U .<_ ( T .\/ U ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
108 |
6 30 29 32 106 107
|
syl131anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
109 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
110 |
30 109
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
111 |
5 2
|
latjcom |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
112 |
7 110 34 111
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
113 |
108 112
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ Q ) ./\ ( T .\/ U ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
114 |
104 113
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
115 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) ) |
116 |
7 34 110 115
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) ) |
117 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) /\ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) ) |
118 |
7 25 116 19 117
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) ) |
119 |
114 118
|
mpd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) |
120 |
5 2
|
latjass |
|- ( ( K e. Lat /\ ( ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) = ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
121 |
7 34 110 19 120
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) = ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
122 |
119 121
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
123 |
5 1 7 17 27 38 53 122
|
lattrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
124 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
125 |
7 11 15 124
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
126 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) /\ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
127 |
7 17 38 11 126
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
128 |
123 125 127
|
mpbi2and |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
129 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
130 |
8 129
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
131 |
5 1 2 3
|
latmlej12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) |
132 |
7 29 32 130 131
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) |
133 |
5 1 2 3 4
|
llnmod1i2 |
|- ( ( ( K e. HL /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( U e. A /\ S e. A ) /\ ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
134 |
6 34 11 30 12 132 133
|
syl321anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
135 |
2 4
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
136 |
6 9 135
|
syl2anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ Q ) = Q ) |
137 |
83
|
oveq2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ Q ) = ( Q .\/ R ) ) |
138 |
136 137
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q = ( Q .\/ R ) ) |
139 |
138
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) |
140 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( U .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ ( U .\/ S ) ) ) |
141 |
7 36 11 140
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ ( U .\/ S ) ) ) |
142 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
143 |
6 8 9 142
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
144 |
83
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ P ) = ( R .\/ P ) ) |
145 |
143 144
|
eqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) = ( R .\/ P ) ) |
146 |
145
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( U .\/ S ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) |
147 |
141 146
|
eqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) |
148 |
139 147
|
oveq12d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
149 |
134 148
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
150 |
128 149
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |