| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
|
simp11 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
| 7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
| 8 |
|
simp21 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
| 9 |
|
simp22 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
| 10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 12 |
|
simp31 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
| 13 |
|
simp32 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
| 14 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 15 |
6 12 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 16 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
| 17 |
7 11 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
| 18 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 19 |
12 18
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
| 20 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) |
| 21 |
7 11 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) |
| 22 |
5 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
| 23 |
13 22
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. ( Base ` K ) ) |
| 24 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) |
| 25 |
7 21 23 24
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) |
| 26 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) e. ( Base ` K ) ) |
| 27 |
7 25 19 26
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) e. ( Base ` K ) ) |
| 28 |
5 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 29 |
9 28
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) ) |
| 30 |
|
simp33 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
| 31 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 32 |
6 13 30 31
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 33 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
| 34 |
7 29 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
| 35 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
| 36 |
6 30 12 35
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
| 37 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) ) |
| 38 |
7 34 36 37
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) ) |
| 39 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) |
| 40 |
7 11 19 39
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) |
| 41 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ S e. A ) -> ( T .\/ S ) e. ( Base ` K ) ) |
| 42 |
6 13 12 41
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ S ) e. ( Base ` K ) ) |
| 43 |
5 1 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( T .\/ S ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) ) |
| 44 |
7 11 21 42 43
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) ) |
| 45 |
40 44
|
mpd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) |
| 46 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) = ( T .\/ S ) ) |
| 47 |
6 12 13 46
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) = ( T .\/ S ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( P .\/ Q ) ./\ ( T .\/ S ) ) ) |
| 49 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) ) |
| 50 |
7 11 19 49
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) ) |
| 51 |
5 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( T e. A /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) /\ S .<_ ( ( P .\/ Q ) .\/ S ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) |
| 52 |
6 13 21 19 50 51
|
syl131anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) |
| 53 |
45 48 52
|
3brtr4d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) ) |
| 54 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 55 |
6 54
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. OL ) |
| 56 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 57 |
6 8 12 56
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 58 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 59 |
7 29 57 58
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
| 60 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
| 61 |
6 9 13 60
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
| 62 |
5 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) ) |
| 63 |
55 59 61 23 62
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) ) |
| 64 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ S ) = ( P .\/ ( Q .\/ S ) ) ) |
| 65 |
6 8 9 12 64
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ S ) = ( P .\/ ( Q .\/ S ) ) ) |
| 66 |
2 4
|
hlatj12 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> ( P .\/ ( Q .\/ S ) ) = ( Q .\/ ( P .\/ S ) ) ) |
| 67 |
6 8 9 12 66
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ S ) ) = ( Q .\/ ( P .\/ S ) ) ) |
| 68 |
65 67
|
eqtr2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( P .\/ S ) ) = ( ( P .\/ Q ) .\/ S ) ) |
| 69 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> T .<_ ( Q .\/ T ) ) |
| 70 |
6 9 13 69
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( Q .\/ T ) ) |
| 71 |
5 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ T e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( T .<_ ( Q .\/ T ) <-> ( ( Q .\/ T ) ./\ T ) = T ) ) |
| 72 |
7 23 61 71
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .<_ ( Q .\/ T ) <-> ( ( Q .\/ T ) ./\ T ) = T ) ) |
| 73 |
70 72
|
mpbid |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ T ) = T ) |
| 74 |
68 73
|
oveq12d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) |
| 75 |
63 74
|
eqtr2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) = ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) ) |
| 76 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> Q .<_ ( Q .\/ T ) ) |
| 77 |
6 9 13 76
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ T ) ) |
| 78 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) /\ Q .<_ ( Q .\/ T ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ) |
| 79 |
6 9 57 61 77 78
|
syl131anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ) |
| 80 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ U e. A /\ Q e. A ) -> Q .<_ ( U .\/ Q ) ) |
| 81 |
6 30 9 80
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( U .\/ Q ) ) |
| 82 |
|
simp13 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
| 83 |
|
simp12 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q = R ) |
| 84 |
83
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ U ) = ( R .\/ U ) ) |
| 85 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ U e. A ) -> ( Q .\/ U ) = ( U .\/ Q ) ) |
| 86 |
6 9 30 85
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ U ) = ( U .\/ Q ) ) |
| 87 |
84 86
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) = ( U .\/ Q ) ) |
| 88 |
82 87
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) |
| 89 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 90 |
7 57 61 89
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 91 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ Q e. A ) -> ( U .\/ Q ) e. ( Base ` K ) ) |
| 92 |
6 30 9 91
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ Q ) e. ( Base ` K ) ) |
| 93 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( U .\/ Q ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( U .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) <-> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) ) |
| 94 |
7 29 90 92 93
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .<_ ( U .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) <-> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) ) |
| 95 |
81 88 94
|
mpbi2and |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) |
| 96 |
79 95
|
eqbrtrrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) |
| 97 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> T .<_ ( T .\/ U ) ) |
| 98 |
6 13 30 97
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( T .\/ U ) ) |
| 99 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 100 |
7 59 61 99
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
| 101 |
5 1 3
|
latmlem12 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( U .\/ Q ) e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) ) -> ( ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) /\ T .<_ ( T .\/ U ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) ) |
| 102 |
7 100 92 23 32 101
|
syl122anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) /\ T .<_ ( T .\/ U ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) ) |
| 103 |
96 98 102
|
mp2and |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
| 104 |
75 103
|
eqbrtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
| 105 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> U .<_ ( T .\/ U ) ) |
| 106 |
6 13 30 105
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( T .\/ U ) ) |
| 107 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( U e. A /\ Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) /\ U .<_ ( T .\/ U ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
| 108 |
6 30 29 32 106 107
|
syl131anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) |
| 109 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 110 |
30 109
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
| 111 |
5 2
|
latjcom |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
| 112 |
7 110 34 111
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
| 113 |
108 112
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ Q ) ./\ ( T .\/ U ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
| 114 |
104 113
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) ) |
| 115 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) ) |
| 116 |
7 34 110 115
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) ) |
| 117 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) /\ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) ) |
| 118 |
7 25 116 19 117
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) ) |
| 119 |
114 118
|
mpd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) |
| 120 |
5 2
|
latjass |
|- ( ( K e. Lat /\ ( ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) = ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
| 121 |
7 34 110 19 120
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) = ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
| 122 |
119 121
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
| 123 |
5 1 7 17 27 38 53 122
|
lattrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ) |
| 124 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
| 125 |
7 11 15 124
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
| 126 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) /\ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
| 127 |
7 17 38 11 126
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
| 128 |
123 125 127
|
mpbi2and |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
| 129 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 130 |
8 129
|
syl |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
| 131 |
5 1 2 3
|
latmlej12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) |
| 132 |
7 29 32 130 131
|
syl13anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) |
| 133 |
5 1 2 3 4
|
llnmod1i2 |
|- ( ( ( K e. HL /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( U e. A /\ S e. A ) /\ ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
| 134 |
6 34 11 30 12 132 133
|
syl321anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
| 135 |
2 4
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
| 136 |
6 9 135
|
syl2anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ Q ) = Q ) |
| 137 |
83
|
oveq2d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ Q ) = ( Q .\/ R ) ) |
| 138 |
136 137
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q = ( Q .\/ R ) ) |
| 139 |
138
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) |
| 140 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( U .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ ( U .\/ S ) ) ) |
| 141 |
7 36 11 140
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ ( U .\/ S ) ) ) |
| 142 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 143 |
6 8 9 142
|
syl3anc |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 144 |
83
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ P ) = ( R .\/ P ) ) |
| 145 |
143 144
|
eqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) = ( R .\/ P ) ) |
| 146 |
145
|
oveq1d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( U .\/ S ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) |
| 147 |
141 146
|
eqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) |
| 148 |
139 147
|
oveq12d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 149 |
134 148
|
eqtr3d |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
| 150 |
128 149
|
breqtrd |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |