Step |
Hyp |
Ref |
Expression |
1 |
|
dchrsum.g |
|- G = ( DChr ` N ) |
2 |
|
dchrsum.z |
|- Z = ( Z/nZ ` N ) |
3 |
|
dchrsum.d |
|- D = ( Base ` G ) |
4 |
|
dchrsum.1 |
|- .1. = ( 0g ` G ) |
5 |
|
dchrsum.x |
|- ( ph -> X e. D ) |
6 |
|
dchrsum2.u |
|- U = ( Unit ` Z ) |
7 |
|
eqeq2 |
|- ( ( phi ` N ) = if ( X = .1. , ( phi ` N ) , 0 ) -> ( sum_ a e. U ( X ` a ) = ( phi ` N ) <-> sum_ a e. U ( X ` a ) = if ( X = .1. , ( phi ` N ) , 0 ) ) ) |
8 |
|
eqeq2 |
|- ( 0 = if ( X = .1. , ( phi ` N ) , 0 ) -> ( sum_ a e. U ( X ` a ) = 0 <-> sum_ a e. U ( X ` a ) = if ( X = .1. , ( phi ` N ) , 0 ) ) ) |
9 |
|
fveq1 |
|- ( X = .1. -> ( X ` a ) = ( .1. ` a ) ) |
10 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
11 |
5 10
|
syl |
|- ( ph -> N e. NN ) |
12 |
11
|
adantr |
|- ( ( ph /\ a e. U ) -> N e. NN ) |
13 |
|
simpr |
|- ( ( ph /\ a e. U ) -> a e. U ) |
14 |
1 2 4 6 12 13
|
dchr1 |
|- ( ( ph /\ a e. U ) -> ( .1. ` a ) = 1 ) |
15 |
9 14
|
sylan9eqr |
|- ( ( ( ph /\ a e. U ) /\ X = .1. ) -> ( X ` a ) = 1 ) |
16 |
15
|
an32s |
|- ( ( ( ph /\ X = .1. ) /\ a e. U ) -> ( X ` a ) = 1 ) |
17 |
16
|
sumeq2dv |
|- ( ( ph /\ X = .1. ) -> sum_ a e. U ( X ` a ) = sum_ a e. U 1 ) |
18 |
2 6
|
znunithash |
|- ( N e. NN -> ( # ` U ) = ( phi ` N ) ) |
19 |
11 18
|
syl |
|- ( ph -> ( # ` U ) = ( phi ` N ) ) |
20 |
11
|
phicld |
|- ( ph -> ( phi ` N ) e. NN ) |
21 |
20
|
nnnn0d |
|- ( ph -> ( phi ` N ) e. NN0 ) |
22 |
19 21
|
eqeltrd |
|- ( ph -> ( # ` U ) e. NN0 ) |
23 |
6
|
fvexi |
|- U e. _V |
24 |
|
hashclb |
|- ( U e. _V -> ( U e. Fin <-> ( # ` U ) e. NN0 ) ) |
25 |
23 24
|
ax-mp |
|- ( U e. Fin <-> ( # ` U ) e. NN0 ) |
26 |
22 25
|
sylibr |
|- ( ph -> U e. Fin ) |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
|
fsumconst |
|- ( ( U e. Fin /\ 1 e. CC ) -> sum_ a e. U 1 = ( ( # ` U ) x. 1 ) ) |
29 |
26 27 28
|
sylancl |
|- ( ph -> sum_ a e. U 1 = ( ( # ` U ) x. 1 ) ) |
30 |
19
|
oveq1d |
|- ( ph -> ( ( # ` U ) x. 1 ) = ( ( phi ` N ) x. 1 ) ) |
31 |
20
|
nncnd |
|- ( ph -> ( phi ` N ) e. CC ) |
32 |
31
|
mulid1d |
|- ( ph -> ( ( phi ` N ) x. 1 ) = ( phi ` N ) ) |
33 |
29 30 32
|
3eqtrd |
|- ( ph -> sum_ a e. U 1 = ( phi ` N ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ X = .1. ) -> sum_ a e. U 1 = ( phi ` N ) ) |
35 |
17 34
|
eqtrd |
|- ( ( ph /\ X = .1. ) -> sum_ a e. U ( X ` a ) = ( phi ` N ) ) |
36 |
1
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
37 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
38 |
3 4
|
grpidcl |
|- ( G e. Grp -> .1. e. D ) |
39 |
11 36 37 38
|
4syl |
|- ( ph -> .1. e. D ) |
40 |
1 2 3 6 5 39
|
dchreq |
|- ( ph -> ( X = .1. <-> A. k e. U ( X ` k ) = ( .1. ` k ) ) ) |
41 |
40
|
notbid |
|- ( ph -> ( -. X = .1. <-> -. A. k e. U ( X ` k ) = ( .1. ` k ) ) ) |
42 |
|
rexnal |
|- ( E. k e. U -. ( X ` k ) = ( .1. ` k ) <-> -. A. k e. U ( X ` k ) = ( .1. ` k ) ) |
43 |
41 42
|
bitr4di |
|- ( ph -> ( -. X = .1. <-> E. k e. U -. ( X ` k ) = ( .1. ` k ) ) ) |
44 |
|
df-ne |
|- ( ( X ` k ) =/= ( .1. ` k ) <-> -. ( X ` k ) = ( .1. ` k ) ) |
45 |
11
|
adantr |
|- ( ( ph /\ k e. U ) -> N e. NN ) |
46 |
|
simpr |
|- ( ( ph /\ k e. U ) -> k e. U ) |
47 |
1 2 4 6 45 46
|
dchr1 |
|- ( ( ph /\ k e. U ) -> ( .1. ` k ) = 1 ) |
48 |
47
|
neeq2d |
|- ( ( ph /\ k e. U ) -> ( ( X ` k ) =/= ( .1. ` k ) <-> ( X ` k ) =/= 1 ) ) |
49 |
26
|
adantr |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> U e. Fin ) |
50 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
51 |
1 2 3 50 5
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
52 |
50 6
|
unitss |
|- U C_ ( Base ` Z ) |
53 |
52
|
sseli |
|- ( a e. U -> a e. ( Base ` Z ) ) |
54 |
|
ffvelrn |
|- ( ( X : ( Base ` Z ) --> CC /\ a e. ( Base ` Z ) ) -> ( X ` a ) e. CC ) |
55 |
51 53 54
|
syl2an |
|- ( ( ph /\ a e. U ) -> ( X ` a ) e. CC ) |
56 |
55
|
adantlr |
|- ( ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) /\ a e. U ) -> ( X ` a ) e. CC ) |
57 |
49 56
|
fsumcl |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> sum_ a e. U ( X ` a ) e. CC ) |
58 |
|
0cnd |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> 0 e. CC ) |
59 |
51
|
adantr |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> X : ( Base ` Z ) --> CC ) |
60 |
|
simprl |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> k e. U ) |
61 |
52 60
|
sselid |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> k e. ( Base ` Z ) ) |
62 |
59 61
|
ffvelrnd |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( X ` k ) e. CC ) |
63 |
|
subcl |
|- ( ( ( X ` k ) e. CC /\ 1 e. CC ) -> ( ( X ` k ) - 1 ) e. CC ) |
64 |
62 27 63
|
sylancl |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( X ` k ) - 1 ) e. CC ) |
65 |
|
simprr |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( X ` k ) =/= 1 ) |
66 |
|
subeq0 |
|- ( ( ( X ` k ) e. CC /\ 1 e. CC ) -> ( ( ( X ` k ) - 1 ) = 0 <-> ( X ` k ) = 1 ) ) |
67 |
62 27 66
|
sylancl |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) - 1 ) = 0 <-> ( X ` k ) = 1 ) ) |
68 |
67
|
necon3bid |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) - 1 ) =/= 0 <-> ( X ` k ) =/= 1 ) ) |
69 |
65 68
|
mpbird |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( X ` k ) - 1 ) =/= 0 ) |
70 |
|
oveq2 |
|- ( x = a -> ( k ( .r ` Z ) x ) = ( k ( .r ` Z ) a ) ) |
71 |
70
|
fveq2d |
|- ( x = a -> ( X ` ( k ( .r ` Z ) x ) ) = ( X ` ( k ( .r ` Z ) a ) ) ) |
72 |
71
|
cbvsumv |
|- sum_ x e. U ( X ` ( k ( .r ` Z ) x ) ) = sum_ a e. U ( X ` ( k ( .r ` Z ) a ) ) |
73 |
1 2 3
|
dchrmhm |
|- D C_ ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) |
74 |
73 5
|
sselid |
|- ( ph -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) /\ a e. U ) -> X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
76 |
61
|
adantr |
|- ( ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) /\ a e. U ) -> k e. ( Base ` Z ) ) |
77 |
53
|
adantl |
|- ( ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) /\ a e. U ) -> a e. ( Base ` Z ) ) |
78 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
79 |
78 50
|
mgpbas |
|- ( Base ` Z ) = ( Base ` ( mulGrp ` Z ) ) |
80 |
|
eqid |
|- ( .r ` Z ) = ( .r ` Z ) |
81 |
78 80
|
mgpplusg |
|- ( .r ` Z ) = ( +g ` ( mulGrp ` Z ) ) |
82 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
83 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
84 |
82 83
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
85 |
79 81 84
|
mhmlin |
|- ( ( X e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) /\ k e. ( Base ` Z ) /\ a e. ( Base ` Z ) ) -> ( X ` ( k ( .r ` Z ) a ) ) = ( ( X ` k ) x. ( X ` a ) ) ) |
86 |
75 76 77 85
|
syl3anc |
|- ( ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) /\ a e. U ) -> ( X ` ( k ( .r ` Z ) a ) ) = ( ( X ` k ) x. ( X ` a ) ) ) |
87 |
86
|
sumeq2dv |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> sum_ a e. U ( X ` ( k ( .r ` Z ) a ) ) = sum_ a e. U ( ( X ` k ) x. ( X ` a ) ) ) |
88 |
72 87
|
eqtrid |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> sum_ x e. U ( X ` ( k ( .r ` Z ) x ) ) = sum_ a e. U ( ( X ` k ) x. ( X ` a ) ) ) |
89 |
|
fveq2 |
|- ( a = ( k ( .r ` Z ) x ) -> ( X ` a ) = ( X ` ( k ( .r ` Z ) x ) ) ) |
90 |
11
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
91 |
2
|
zncrng |
|- ( N e. NN0 -> Z e. CRing ) |
92 |
|
crngring |
|- ( Z e. CRing -> Z e. Ring ) |
93 |
|
eqid |
|- ( ( mulGrp ` Z ) |`s U ) = ( ( mulGrp ` Z ) |`s U ) |
94 |
6 93
|
unitgrp |
|- ( Z e. Ring -> ( ( mulGrp ` Z ) |`s U ) e. Grp ) |
95 |
90 91 92 94
|
4syl |
|- ( ph -> ( ( mulGrp ` Z ) |`s U ) e. Grp ) |
96 |
|
eqid |
|- ( b e. U |-> ( c e. U |-> ( b ( .r ` Z ) c ) ) ) = ( b e. U |-> ( c e. U |-> ( b ( .r ` Z ) c ) ) ) |
97 |
6 93
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` Z ) |`s U ) ) |
98 |
93 81
|
ressplusg |
|- ( U e. _V -> ( .r ` Z ) = ( +g ` ( ( mulGrp ` Z ) |`s U ) ) ) |
99 |
23 98
|
ax-mp |
|- ( .r ` Z ) = ( +g ` ( ( mulGrp ` Z ) |`s U ) ) |
100 |
96 97 99
|
grplactf1o |
|- ( ( ( ( mulGrp ` Z ) |`s U ) e. Grp /\ k e. U ) -> ( ( b e. U |-> ( c e. U |-> ( b ( .r ` Z ) c ) ) ) ` k ) : U -1-1-onto-> U ) |
101 |
95 60 100
|
syl2an2r |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( b e. U |-> ( c e. U |-> ( b ( .r ` Z ) c ) ) ) ` k ) : U -1-1-onto-> U ) |
102 |
96 97
|
grplactval |
|- ( ( k e. U /\ x e. U ) -> ( ( ( b e. U |-> ( c e. U |-> ( b ( .r ` Z ) c ) ) ) ` k ) ` x ) = ( k ( .r ` Z ) x ) ) |
103 |
60 102
|
sylan |
|- ( ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) /\ x e. U ) -> ( ( ( b e. U |-> ( c e. U |-> ( b ( .r ` Z ) c ) ) ) ` k ) ` x ) = ( k ( .r ` Z ) x ) ) |
104 |
89 49 101 103 56
|
fsumf1o |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> sum_ a e. U ( X ` a ) = sum_ x e. U ( X ` ( k ( .r ` Z ) x ) ) ) |
105 |
49 62 56
|
fsummulc2 |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( X ` k ) x. sum_ a e. U ( X ` a ) ) = sum_ a e. U ( ( X ` k ) x. ( X ` a ) ) ) |
106 |
88 104 105
|
3eqtr4rd |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( X ` k ) x. sum_ a e. U ( X ` a ) ) = sum_ a e. U ( X ` a ) ) |
107 |
57
|
mulid2d |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( 1 x. sum_ a e. U ( X ` a ) ) = sum_ a e. U ( X ` a ) ) |
108 |
106 107
|
oveq12d |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) x. sum_ a e. U ( X ` a ) ) - ( 1 x. sum_ a e. U ( X ` a ) ) ) = ( sum_ a e. U ( X ` a ) - sum_ a e. U ( X ` a ) ) ) |
109 |
57
|
subidd |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( sum_ a e. U ( X ` a ) - sum_ a e. U ( X ` a ) ) = 0 ) |
110 |
108 109
|
eqtrd |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) x. sum_ a e. U ( X ` a ) ) - ( 1 x. sum_ a e. U ( X ` a ) ) ) = 0 ) |
111 |
|
1cnd |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> 1 e. CC ) |
112 |
62 111 57
|
subdird |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) - 1 ) x. sum_ a e. U ( X ` a ) ) = ( ( ( X ` k ) x. sum_ a e. U ( X ` a ) ) - ( 1 x. sum_ a e. U ( X ` a ) ) ) ) |
113 |
64
|
mul01d |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) - 1 ) x. 0 ) = 0 ) |
114 |
110 112 113
|
3eqtr4d |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> ( ( ( X ` k ) - 1 ) x. sum_ a e. U ( X ` a ) ) = ( ( ( X ` k ) - 1 ) x. 0 ) ) |
115 |
57 58 64 69 114
|
mulcanad |
|- ( ( ph /\ ( k e. U /\ ( X ` k ) =/= 1 ) ) -> sum_ a e. U ( X ` a ) = 0 ) |
116 |
115
|
expr |
|- ( ( ph /\ k e. U ) -> ( ( X ` k ) =/= 1 -> sum_ a e. U ( X ` a ) = 0 ) ) |
117 |
48 116
|
sylbid |
|- ( ( ph /\ k e. U ) -> ( ( X ` k ) =/= ( .1. ` k ) -> sum_ a e. U ( X ` a ) = 0 ) ) |
118 |
44 117
|
syl5bir |
|- ( ( ph /\ k e. U ) -> ( -. ( X ` k ) = ( .1. ` k ) -> sum_ a e. U ( X ` a ) = 0 ) ) |
119 |
118
|
rexlimdva |
|- ( ph -> ( E. k e. U -. ( X ` k ) = ( .1. ` k ) -> sum_ a e. U ( X ` a ) = 0 ) ) |
120 |
43 119
|
sylbid |
|- ( ph -> ( -. X = .1. -> sum_ a e. U ( X ` a ) = 0 ) ) |
121 |
120
|
imp |
|- ( ( ph /\ -. X = .1. ) -> sum_ a e. U ( X ` a ) = 0 ) |
122 |
7 8 35 121
|
ifbothda |
|- ( ph -> sum_ a e. U ( X ` a ) = if ( X = .1. , ( phi ` N ) , 0 ) ) |