| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrsum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 2 |
|
dchrsum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 3 |
|
dchrsum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 4 |
|
dchrsum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 5 |
|
dchrsum.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 6 |
|
dchrsum2.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
| 7 |
|
eqeq2 |
⊢ ( ( ϕ ‘ 𝑁 ) = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) → ( Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = ( ϕ ‘ 𝑁 ) ↔ Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) ) |
| 8 |
|
eqeq2 |
⊢ ( 0 = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) → ( Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ↔ Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) ) |
| 9 |
|
fveq1 |
⊢ ( 𝑋 = 1 → ( 𝑋 ‘ 𝑎 ) = ( 1 ‘ 𝑎 ) ) |
| 10 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) → 𝑁 ∈ ℕ ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) → 𝑎 ∈ 𝑈 ) |
| 14 |
1 2 4 6 12 13
|
dchr1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) → ( 1 ‘ 𝑎 ) = 1 ) |
| 15 |
9 14
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑋 = 1 ) → ( 𝑋 ‘ 𝑎 ) = 1 ) |
| 16 |
15
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑋 = 1 ) ∧ 𝑎 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑎 ) = 1 ) |
| 17 |
16
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑋 = 1 ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = Σ 𝑎 ∈ 𝑈 1 ) |
| 18 |
2 6
|
znunithash |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝑈 ) = ( ϕ ‘ 𝑁 ) ) |
| 19 |
11 18
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ϕ ‘ 𝑁 ) ) |
| 20 |
11
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 21 |
20
|
nnnn0d |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) |
| 22 |
19 21
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
| 23 |
6
|
fvexi |
⊢ 𝑈 ∈ V |
| 24 |
|
hashclb |
⊢ ( 𝑈 ∈ V → ( 𝑈 ∈ Fin ↔ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) ) |
| 25 |
23 24
|
ax-mp |
⊢ ( 𝑈 ∈ Fin ↔ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
| 26 |
22 25
|
sylibr |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 28 |
|
fsumconst |
⊢ ( ( 𝑈 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑎 ∈ 𝑈 1 = ( ( ♯ ‘ 𝑈 ) · 1 ) ) |
| 29 |
26 27 28
|
sylancl |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝑈 1 = ( ( ♯ ‘ 𝑈 ) · 1 ) ) |
| 30 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) · 1 ) = ( ( ϕ ‘ 𝑁 ) · 1 ) ) |
| 31 |
20
|
nncnd |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℂ ) |
| 32 |
31
|
mulridd |
⊢ ( 𝜑 → ( ( ϕ ‘ 𝑁 ) · 1 ) = ( ϕ ‘ 𝑁 ) ) |
| 33 |
29 30 32
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝑈 1 = ( ϕ ‘ 𝑁 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 1 ) → Σ 𝑎 ∈ 𝑈 1 = ( ϕ ‘ 𝑁 ) ) |
| 35 |
17 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 1 ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = ( ϕ ‘ 𝑁 ) ) |
| 36 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
| 37 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 38 |
3 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 1 ∈ 𝐷 ) |
| 39 |
11 36 37 38
|
4syl |
⊢ ( 𝜑 → 1 ∈ 𝐷 ) |
| 40 |
1 2 3 6 5 39
|
dchreq |
⊢ ( 𝜑 → ( 𝑋 = 1 ↔ ∀ 𝑘 ∈ 𝑈 ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) ) ) |
| 41 |
40
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑋 = 1 ↔ ¬ ∀ 𝑘 ∈ 𝑈 ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) ) ) |
| 42 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ 𝑈 ¬ ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ 𝑈 ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) ) |
| 43 |
41 42
|
bitr4di |
⊢ ( 𝜑 → ( ¬ 𝑋 = 1 ↔ ∃ 𝑘 ∈ 𝑈 ¬ ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) ) ) |
| 44 |
|
df-ne |
⊢ ( ( 𝑋 ‘ 𝑘 ) ≠ ( 1 ‘ 𝑘 ) ↔ ¬ ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) ) |
| 45 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑁 ∈ ℕ ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝑈 ) |
| 47 |
1 2 4 6 45 46
|
dchr1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 1 ‘ 𝑘 ) = 1 ) |
| 48 |
47
|
neeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑋 ‘ 𝑘 ) ≠ ( 1 ‘ 𝑘 ) ↔ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) |
| 49 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → 𝑈 ∈ Fin ) |
| 50 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 51 |
1 2 3 50 5
|
dchrf |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
| 52 |
50 6
|
unitss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑍 ) |
| 53 |
52
|
sseli |
⊢ ( 𝑎 ∈ 𝑈 → 𝑎 ∈ ( Base ‘ 𝑍 ) ) |
| 54 |
|
ffvelcdm |
⊢ ( ( 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ∧ 𝑎 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ 𝑎 ) ∈ ℂ ) |
| 55 |
51 53 54
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑎 ) ∈ ℂ ) |
| 56 |
55
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) ∧ 𝑎 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑎 ) ∈ ℂ ) |
| 57 |
49 56
|
fsumcl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ∈ ℂ ) |
| 58 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → 0 ∈ ℂ ) |
| 59 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
| 60 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → 𝑘 ∈ 𝑈 ) |
| 61 |
52 60
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → 𝑘 ∈ ( Base ‘ 𝑍 ) ) |
| 62 |
59 61
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( 𝑋 ‘ 𝑘 ) ∈ ℂ ) |
| 63 |
|
subcl |
⊢ ( ( ( 𝑋 ‘ 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑋 ‘ 𝑘 ) − 1 ) ∈ ℂ ) |
| 64 |
62 27 63
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( 𝑋 ‘ 𝑘 ) − 1 ) ∈ ℂ ) |
| 65 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( 𝑋 ‘ 𝑘 ) ≠ 1 ) |
| 66 |
|
subeq0 |
⊢ ( ( ( 𝑋 ‘ 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) = 0 ↔ ( 𝑋 ‘ 𝑘 ) = 1 ) ) |
| 67 |
62 27 66
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) = 0 ↔ ( 𝑋 ‘ 𝑘 ) = 1 ) ) |
| 68 |
67
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) ≠ 0 ↔ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) |
| 69 |
65 68
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( 𝑋 ‘ 𝑘 ) − 1 ) ≠ 0 ) |
| 70 |
|
oveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) = ( 𝑘 ( .r ‘ 𝑍 ) 𝑎 ) ) |
| 71 |
70
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) = ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑎 ) ) ) |
| 72 |
71
|
cbvsumv |
⊢ Σ 𝑥 ∈ 𝑈 ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) = Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑎 ) ) |
| 73 |
1 2 3
|
dchrmhm |
⊢ 𝐷 ⊆ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) |
| 74 |
73 5
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 75 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) ∧ 𝑎 ∈ 𝑈 ) → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 76 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) ∧ 𝑎 ∈ 𝑈 ) → 𝑘 ∈ ( Base ‘ 𝑍 ) ) |
| 77 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) ∧ 𝑎 ∈ 𝑈 ) → 𝑎 ∈ ( Base ‘ 𝑍 ) ) |
| 78 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
| 79 |
78 50
|
mgpbas |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
| 80 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
| 81 |
78 80
|
mgpplusg |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 82 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 83 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 84 |
82 83
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 85 |
79 81 84
|
mhmlin |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑍 ) ∧ 𝑎 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑎 ) ) = ( ( 𝑋 ‘ 𝑘 ) · ( 𝑋 ‘ 𝑎 ) ) ) |
| 86 |
75 76 77 85
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) ∧ 𝑎 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑎 ) ) = ( ( 𝑋 ‘ 𝑘 ) · ( 𝑋 ‘ 𝑎 ) ) ) |
| 87 |
86
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑎 ) ) = Σ 𝑎 ∈ 𝑈 ( ( 𝑋 ‘ 𝑘 ) · ( 𝑋 ‘ 𝑎 ) ) ) |
| 88 |
72 87
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → Σ 𝑥 ∈ 𝑈 ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) = Σ 𝑎 ∈ 𝑈 ( ( 𝑋 ‘ 𝑘 ) · ( 𝑋 ‘ 𝑎 ) ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) ) |
| 90 |
11
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 91 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
| 92 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
| 93 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) |
| 94 |
6 93
|
unitgrp |
⊢ ( 𝑍 ∈ Ring → ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ) |
| 95 |
90 91 92 94
|
4syl |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ) |
| 96 |
|
eqid |
⊢ ( 𝑏 ∈ 𝑈 ↦ ( 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( .r ‘ 𝑍 ) 𝑐 ) ) ) = ( 𝑏 ∈ 𝑈 ↦ ( 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( .r ‘ 𝑍 ) 𝑐 ) ) ) |
| 97 |
6 93
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) |
| 98 |
93 81
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑍 ) = ( +g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ) |
| 99 |
23 98
|
ax-mp |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) |
| 100 |
96 97 99
|
grplactf1o |
⊢ ( ( ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑏 ∈ 𝑈 ↦ ( 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( .r ‘ 𝑍 ) 𝑐 ) ) ) ‘ 𝑘 ) : 𝑈 –1-1-onto→ 𝑈 ) |
| 101 |
95 60 100
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( 𝑏 ∈ 𝑈 ↦ ( 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( .r ‘ 𝑍 ) 𝑐 ) ) ) ‘ 𝑘 ) : 𝑈 –1-1-onto→ 𝑈 ) |
| 102 |
96 97
|
grplactval |
⊢ ( ( 𝑘 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) → ( ( ( 𝑏 ∈ 𝑈 ↦ ( 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( .r ‘ 𝑍 ) 𝑐 ) ) ) ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) |
| 103 |
60 102
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( ( 𝑏 ∈ 𝑈 ↦ ( 𝑐 ∈ 𝑈 ↦ ( 𝑏 ( .r ‘ 𝑍 ) 𝑐 ) ) ) ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) |
| 104 |
89 49 101 103 56
|
fsumf1o |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = Σ 𝑥 ∈ 𝑈 ( 𝑋 ‘ ( 𝑘 ( .r ‘ 𝑍 ) 𝑥 ) ) ) |
| 105 |
49 62 56
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( 𝑋 ‘ 𝑘 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) = Σ 𝑎 ∈ 𝑈 ( ( 𝑋 ‘ 𝑘 ) · ( 𝑋 ‘ 𝑎 ) ) ) |
| 106 |
88 104 105
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( 𝑋 ‘ 𝑘 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) = Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) |
| 107 |
57
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( 1 · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) = Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) |
| 108 |
106 107
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) − ( 1 · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) ) = ( Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) − Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) ) |
| 109 |
57
|
subidd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) − Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) = 0 ) |
| 110 |
108 109
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) − ( 1 · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) ) = 0 ) |
| 111 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → 1 ∈ ℂ ) |
| 112 |
62 111 57
|
subdird |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) = ( ( ( 𝑋 ‘ 𝑘 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) − ( 1 · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) ) ) |
| 113 |
64
|
mul01d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) · 0 ) = 0 ) |
| 114 |
110 112 113
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) · Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) ) = ( ( ( 𝑋 ‘ 𝑘 ) − 1 ) · 0 ) ) |
| 115 |
57 58 64 69 114
|
mulcanad |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑈 ∧ ( 𝑋 ‘ 𝑘 ) ≠ 1 ) ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) |
| 116 |
115
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑋 ‘ 𝑘 ) ≠ 1 → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) ) |
| 117 |
48 116
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( ( 𝑋 ‘ 𝑘 ) ≠ ( 1 ‘ 𝑘 ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) ) |
| 118 |
44 117
|
biimtrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( ¬ ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) ) |
| 119 |
118
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑈 ¬ ( 𝑋 ‘ 𝑘 ) = ( 1 ‘ 𝑘 ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) ) |
| 120 |
43 119
|
sylbid |
⊢ ( 𝜑 → ( ¬ 𝑋 = 1 → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) ) |
| 121 |
120
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 1 ) → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = 0 ) |
| 122 |
7 8 35 121
|
ifbothda |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝑈 ( 𝑋 ‘ 𝑎 ) = if ( 𝑋 = 1 , ( ϕ ‘ 𝑁 ) , 0 ) ) |