| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
| 8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
| 9 |
|
dchrvmasum.a |
|- ( ph -> A e. RR+ ) |
| 10 |
|
dchrvmasum2.2 |
|- ( ph -> 1 <_ A ) |
| 11 |
|
2fveq3 |
|- ( n = ( d x. m ) -> ( X ` ( L ` n ) ) = ( X ` ( L ` ( d x. m ) ) ) ) |
| 12 |
|
id |
|- ( n = ( d x. m ) -> n = ( d x. m ) ) |
| 13 |
11 12
|
oveq12d |
|- ( n = ( d x. m ) -> ( ( X ` ( L ` n ) ) / n ) = ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) ) |
| 14 |
|
oveq2 |
|- ( n = ( d x. m ) -> ( A / n ) = ( A / ( d x. m ) ) ) |
| 15 |
14
|
fveq2d |
|- ( n = ( d x. m ) -> ( log ` ( A / n ) ) = ( log ` ( A / ( d x. m ) ) ) ) |
| 16 |
13 15
|
oveq12d |
|- ( n = ( d x. m ) -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) = ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) |
| 17 |
16
|
oveq2d |
|- ( n = ( d x. m ) -> ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) = ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 18 |
9
|
rpred |
|- ( ph -> A e. RR ) |
| 19 |
|
elrabi |
|- ( d e. { x e. NN | x || n } -> d e. NN ) |
| 20 |
19
|
ad2antll |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> d e. NN ) |
| 21 |
|
mucl |
|- ( d e. NN -> ( mmu ` d ) e. ZZ ) |
| 22 |
20 21
|
syl |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. ZZ ) |
| 23 |
22
|
zcnd |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( mmu ` d ) e. CC ) |
| 24 |
7
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> X e. D ) |
| 25 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. ZZ ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. ZZ ) |
| 27 |
4 1 5 2 24 26
|
dchrzrhcl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
| 28 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 30 |
29
|
nncnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. CC ) |
| 31 |
29
|
nnne0d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n =/= 0 ) |
| 32 |
27 30 31
|
divcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` n ) ) / n ) e. CC ) |
| 33 |
28
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. RR+ ) |
| 34 |
|
rpdivcl |
|- ( ( A e. RR+ /\ n e. RR+ ) -> ( A / n ) e. RR+ ) |
| 35 |
9 33 34
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( A / n ) e. RR+ ) |
| 36 |
35
|
relogcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / n ) ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / n ) ) e. CC ) |
| 38 |
32 37
|
mulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) e. CC ) |
| 39 |
38
|
adantrr |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) e. CC ) |
| 40 |
23 39
|
mulcld |
|- ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. { x e. NN | x || n } ) ) -> ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) e. CC ) |
| 41 |
17 18 40
|
dvdsflsumcom |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 42 |
|
2fveq3 |
|- ( n = 1 -> ( X ` ( L ` n ) ) = ( X ` ( L ` 1 ) ) ) |
| 43 |
|
id |
|- ( n = 1 -> n = 1 ) |
| 44 |
42 43
|
oveq12d |
|- ( n = 1 -> ( ( X ` ( L ` n ) ) / n ) = ( ( X ` ( L ` 1 ) ) / 1 ) ) |
| 45 |
|
oveq2 |
|- ( n = 1 -> ( A / n ) = ( A / 1 ) ) |
| 46 |
45
|
fveq2d |
|- ( n = 1 -> ( log ` ( A / n ) ) = ( log ` ( A / 1 ) ) ) |
| 47 |
44 46
|
oveq12d |
|- ( n = 1 -> ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) = ( ( ( X ` ( L ` 1 ) ) / 1 ) x. ( log ` ( A / 1 ) ) ) ) |
| 48 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
| 49 |
|
fz1ssnn |
|- ( 1 ... ( |_ ` A ) ) C_ NN |
| 50 |
49
|
a1i |
|- ( ph -> ( 1 ... ( |_ ` A ) ) C_ NN ) |
| 51 |
|
flge1nn |
|- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. NN ) |
| 52 |
18 10 51
|
syl2anc |
|- ( ph -> ( |_ ` A ) e. NN ) |
| 53 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 54 |
52 53
|
eleqtrdi |
|- ( ph -> ( |_ ` A ) e. ( ZZ>= ` 1 ) ) |
| 55 |
|
eluzfz1 |
|- ( ( |_ ` A ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` A ) ) ) |
| 56 |
54 55
|
syl |
|- ( ph -> 1 e. ( 1 ... ( |_ ` A ) ) ) |
| 57 |
47 48 50 56 38
|
musumsum |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) = ( ( ( X ` ( L ` 1 ) ) / 1 ) x. ( log ` ( A / 1 ) ) ) ) |
| 58 |
4 1 5 2 7
|
dchrzrh1 |
|- ( ph -> ( X ` ( L ` 1 ) ) = 1 ) |
| 59 |
58
|
oveq1d |
|- ( ph -> ( ( X ` ( L ` 1 ) ) / 1 ) = ( 1 / 1 ) ) |
| 60 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 61 |
59 60
|
eqtrdi |
|- ( ph -> ( ( X ` ( L ` 1 ) ) / 1 ) = 1 ) |
| 62 |
9
|
rpcnd |
|- ( ph -> A e. CC ) |
| 63 |
62
|
div1d |
|- ( ph -> ( A / 1 ) = A ) |
| 64 |
63
|
fveq2d |
|- ( ph -> ( log ` ( A / 1 ) ) = ( log ` A ) ) |
| 65 |
61 64
|
oveq12d |
|- ( ph -> ( ( ( X ` ( L ` 1 ) ) / 1 ) x. ( log ` ( A / 1 ) ) ) = ( 1 x. ( log ` A ) ) ) |
| 66 |
9
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
| 67 |
66
|
recnd |
|- ( ph -> ( log ` A ) e. CC ) |
| 68 |
67
|
mullidd |
|- ( ph -> ( 1 x. ( log ` A ) ) = ( log ` A ) ) |
| 69 |
57 65 68
|
3eqtrrd |
|- ( ph -> ( log ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. { x e. NN | x || n } ( ( mmu ` d ) x. ( ( ( X ` ( L ` n ) ) / n ) x. ( log ` ( A / n ) ) ) ) ) |
| 70 |
|
fzfid |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / d ) ) ) e. Fin ) |
| 71 |
7
|
adantr |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> X e. D ) |
| 72 |
|
elfzelz |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. ZZ ) |
| 73 |
72
|
adantl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. ZZ ) |
| 74 |
4 1 5 2 71 73
|
dchrzrhcl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
| 75 |
|
fznnfl |
|- ( A e. RR -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
| 76 |
18 75
|
syl |
|- ( ph -> ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. NN /\ d <_ A ) ) ) |
| 77 |
76
|
simprbda |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. NN ) |
| 78 |
77 21
|
syl |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( mmu ` d ) e. ZZ ) |
| 79 |
78
|
zred |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( mmu ` d ) e. RR ) |
| 80 |
79 77
|
nndivred |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( mmu ` d ) / d ) e. RR ) |
| 81 |
80
|
recnd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( mmu ` d ) / d ) e. CC ) |
| 82 |
74 81
|
mulcld |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) e. CC ) |
| 83 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> X e. D ) |
| 84 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. ZZ ) |
| 85 |
84
|
adantl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. ZZ ) |
| 86 |
4 1 5 2 83 85
|
dchrzrhcl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
| 87 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. NN ) |
| 88 |
87
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. RR+ ) |
| 89 |
|
rpdivcl |
|- ( ( A e. RR+ /\ d e. RR+ ) -> ( A / d ) e. RR+ ) |
| 90 |
9 88 89
|
syl2an |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( A / d ) e. RR+ ) |
| 91 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. NN ) |
| 92 |
91
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` ( A / d ) ) ) -> m e. RR+ ) |
| 93 |
|
rpdivcl |
|- ( ( ( A / d ) e. RR+ /\ m e. RR+ ) -> ( ( A / d ) / m ) e. RR+ ) |
| 94 |
90 92 93
|
syl2an |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( A / d ) / m ) e. RR+ ) |
| 95 |
94
|
relogcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( ( A / d ) / m ) ) e. RR ) |
| 96 |
91
|
adantl |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. NN ) |
| 97 |
95 96
|
nndivred |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( log ` ( ( A / d ) / m ) ) / m ) e. RR ) |
| 98 |
97
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( log ` ( ( A / d ) / m ) ) / m ) e. CC ) |
| 99 |
86 98
|
mulcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) e. CC ) |
| 100 |
70 82 99
|
fsummulc2 |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) ) |
| 101 |
74
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
| 102 |
79
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( mmu ` d ) e. RR ) |
| 103 |
102
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( mmu ` d ) e. CC ) |
| 104 |
77
|
nnrpd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. RR+ ) |
| 105 |
104
|
adantr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. RR+ ) |
| 106 |
105
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( d e. CC /\ d =/= 0 ) ) |
| 107 |
|
div12 |
|- ( ( ( X ` ( L ` d ) ) e. CC /\ ( mmu ` d ) e. CC /\ ( d e. CC /\ d =/= 0 ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) = ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) ) |
| 108 |
101 103 106 107
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) = ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) ) |
| 109 |
95
|
recnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( ( A / d ) / m ) ) e. CC ) |
| 110 |
96
|
nnrpd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. RR+ ) |
| 111 |
110
|
rpcnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( m e. CC /\ m =/= 0 ) ) |
| 112 |
|
div12 |
|- ( ( ( X ` ( L ` m ) ) e. CC /\ ( log ` ( ( A / d ) / m ) ) e. CC /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
| 113 |
86 109 111 112
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
| 114 |
108 113
|
oveq12d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = ( ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
| 115 |
105
|
rpcnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. CC ) |
| 116 |
105
|
rpne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d =/= 0 ) |
| 117 |
101 115 116
|
divcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` d ) ) / d ) e. CC ) |
| 118 |
96
|
nncnd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m e. CC ) |
| 119 |
96
|
nnne0d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> m =/= 0 ) |
| 120 |
86 118 119
|
divcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) |
| 121 |
117 120
|
mulcld |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) e. CC ) |
| 122 |
103 109 121
|
mulassd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( log ` ( ( A / d ) / m ) ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) ) |
| 123 |
103 117 109 120
|
mul4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( ( mmu ` d ) x. ( log ` ( ( A / d ) / m ) ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
| 124 |
72
|
ad2antlr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> d e. ZZ ) |
| 125 |
4 1 5 2 83 124 85
|
dchrzrhmul |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( X ` ( L ` ( d x. m ) ) ) = ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) ) |
| 126 |
125
|
oveq1d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) / ( d x. m ) ) ) |
| 127 |
|
divmuldiv |
|- ( ( ( ( X ` ( L ` d ) ) e. CC /\ ( X ` ( L ` m ) ) e. CC ) /\ ( ( d e. CC /\ d =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) ) -> ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) / ( d x. m ) ) ) |
| 128 |
101 86 106 111 127
|
syl22anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( X ` ( L ` d ) ) x. ( X ` ( L ` m ) ) ) / ( d x. m ) ) ) |
| 129 |
126 128
|
eqtr4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) = ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) |
| 130 |
62
|
ad2antrr |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> A e. CC ) |
| 131 |
|
divdiv1 |
|- ( ( A e. CC /\ ( d e. CC /\ d =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( A / d ) / m ) = ( A / ( d x. m ) ) ) |
| 132 |
130 106 111 131
|
syl3anc |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( A / d ) / m ) = ( A / ( d x. m ) ) ) |
| 133 |
132
|
eqcomd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( A / ( d x. m ) ) = ( ( A / d ) / m ) ) |
| 134 |
133
|
fveq2d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( log ` ( A / ( d x. m ) ) ) = ( log ` ( ( A / d ) / m ) ) ) |
| 135 |
129 134
|
oveq12d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) = ( ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) x. ( log ` ( ( A / d ) / m ) ) ) ) |
| 136 |
121 109
|
mulcomd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) x. ( log ` ( ( A / d ) / m ) ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
| 137 |
135 136
|
eqtrd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) = ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) |
| 138 |
137
|
oveq2d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) = ( ( mmu ` d ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( ( X ` ( L ` d ) ) / d ) x. ( ( X ` ( L ` m ) ) / m ) ) ) ) ) |
| 139 |
122 123 138
|
3eqtr4d |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( mmu ` d ) x. ( ( X ` ( L ` d ) ) / d ) ) x. ( ( log ` ( ( A / d ) / m ) ) x. ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 140 |
114 139
|
eqtrd |
|- ( ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 141 |
140
|
sumeq2dv |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 142 |
100 141
|
eqtrd |
|- ( ( ph /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 143 |
142
|
sumeq2dv |
|- ( ph -> sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( mmu ` d ) x. ( ( ( X ` ( L ` ( d x. m ) ) ) / ( d x. m ) ) x. ( log ` ( A / ( d x. m ) ) ) ) ) ) |
| 144 |
41 69 143
|
3eqtr4d |
|- ( ph -> ( log ` A ) = sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ m e. ( 1 ... ( |_ ` ( A / d ) ) ) ( ( X ` ( L ` m ) ) x. ( ( log ` ( ( A / d ) / m ) ) / m ) ) ) ) |