| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divalglem8.1 |
|- N e. ZZ |
| 2 |
|
divalglem8.2 |
|- D e. ZZ |
| 3 |
|
divalglem8.3 |
|- D =/= 0 |
| 4 |
|
divalglem8.4 |
|- S = { r e. NN0 | D || ( N - r ) } |
| 5 |
4
|
ssrab3 |
|- S C_ NN0 |
| 6 |
|
nn0sscn |
|- NN0 C_ CC |
| 7 |
5 6
|
sstri |
|- S C_ CC |
| 8 |
7
|
sseli |
|- ( Y e. S -> Y e. CC ) |
| 9 |
7
|
sseli |
|- ( X e. S -> X e. CC ) |
| 10 |
|
nnabscl |
|- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
| 11 |
2 3 10
|
mp2an |
|- ( abs ` D ) e. NN |
| 12 |
11
|
nnzi |
|- ( abs ` D ) e. ZZ |
| 13 |
|
zmulcl |
|- ( ( K e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( K x. ( abs ` D ) ) e. ZZ ) |
| 14 |
12 13
|
mpan2 |
|- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. ZZ ) |
| 15 |
14
|
zcnd |
|- ( K e. ZZ -> ( K x. ( abs ` D ) ) e. CC ) |
| 16 |
|
subadd |
|- ( ( Y e. CC /\ X e. CC /\ ( K x. ( abs ` D ) ) e. CC ) -> ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( X + ( K x. ( abs ` D ) ) ) = Y ) ) |
| 17 |
8 9 15 16
|
syl3an |
|- ( ( Y e. S /\ X e. S /\ K e. ZZ ) -> ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( X + ( K x. ( abs ` D ) ) ) = Y ) ) |
| 18 |
17
|
3com12 |
|- ( ( X e. S /\ Y e. S /\ K e. ZZ ) -> ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( X + ( K x. ( abs ` D ) ) ) = Y ) ) |
| 19 |
|
eqcom |
|- ( ( Y - X ) = ( K x. ( abs ` D ) ) <-> ( K x. ( abs ` D ) ) = ( Y - X ) ) |
| 20 |
|
eqcom |
|- ( ( X + ( K x. ( abs ` D ) ) ) = Y <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) |
| 21 |
18 19 20
|
3bitr3g |
|- ( ( X e. S /\ Y e. S /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) ) |
| 22 |
21
|
3adant1r |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ Y e. S /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) ) |
| 23 |
22
|
3adant2r |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> Y = ( X + ( K x. ( abs ` D ) ) ) ) ) |
| 24 |
|
breq1 |
|- ( z = Y -> ( z < ( abs ` D ) <-> Y < ( abs ` D ) ) ) |
| 25 |
|
eleq1 |
|- ( z = Y -> ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 26 |
24 25
|
imbi12d |
|- ( z = Y -> ( ( z < ( abs ` D ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( Y < ( abs ` D ) -> Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
| 27 |
5
|
sseli |
|- ( z e. S -> z e. NN0 ) |
| 28 |
|
elnn0z |
|- ( z e. NN0 <-> ( z e. ZZ /\ 0 <_ z ) ) |
| 29 |
27 28
|
sylib |
|- ( z e. S -> ( z e. ZZ /\ 0 <_ z ) ) |
| 30 |
29
|
anim1i |
|- ( ( z e. S /\ z < ( abs ` D ) ) -> ( ( z e. ZZ /\ 0 <_ z ) /\ z < ( abs ` D ) ) ) |
| 31 |
|
df-3an |
|- ( ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) <-> ( ( z e. ZZ /\ 0 <_ z ) /\ z < ( abs ` D ) ) ) |
| 32 |
30 31
|
sylibr |
|- ( ( z e. S /\ z < ( abs ` D ) ) -> ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) ) |
| 33 |
|
0z |
|- 0 e. ZZ |
| 34 |
|
elfzm11 |
|- ( ( 0 e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) ) ) |
| 35 |
33 12 34
|
mp2an |
|- ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( z e. ZZ /\ 0 <_ z /\ z < ( abs ` D ) ) ) |
| 36 |
32 35
|
sylibr |
|- ( ( z e. S /\ z < ( abs ` D ) ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) |
| 37 |
36
|
ex |
|- ( z e. S -> ( z < ( abs ` D ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 38 |
26 37
|
vtoclga |
|- ( Y e. S -> ( Y < ( abs ` D ) -> Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 39 |
|
eleq1 |
|- ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 40 |
39
|
biimpd |
|- ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( Y e. ( 0 ... ( ( abs ` D ) - 1 ) ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 41 |
38 40
|
sylan9 |
|- ( ( Y e. S /\ Y = ( X + ( K x. ( abs ` D ) ) ) ) -> ( Y < ( abs ` D ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 42 |
41
|
impancom |
|- ( ( Y e. S /\ Y < ( abs ` D ) ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 43 |
42
|
3ad2ant2 |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 44 |
|
breq1 |
|- ( z = X -> ( z < ( abs ` D ) <-> X < ( abs ` D ) ) ) |
| 45 |
|
eleq1 |
|- ( z = X -> ( z e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 46 |
44 45
|
imbi12d |
|- ( z = X -> ( ( z < ( abs ` D ) -> z e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( X < ( abs ` D ) -> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
| 47 |
46 37
|
vtoclga |
|- ( X e. S -> ( X < ( abs ` D ) -> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 48 |
47
|
imp |
|- ( ( X e. S /\ X < ( abs ` D ) ) -> X e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) |
| 49 |
2 3
|
divalglem7 |
|- ( ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 50 |
48 49
|
sylan |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 51 |
50
|
3adant2 |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 52 |
51
|
con2d |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) -> -. K =/= 0 ) ) |
| 53 |
43 52
|
syld |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> -. K =/= 0 ) ) |
| 54 |
|
df-ne |
|- ( K =/= 0 <-> -. K = 0 ) |
| 55 |
54
|
con2bii |
|- ( K = 0 <-> -. K =/= 0 ) |
| 56 |
53 55
|
imbitrrdi |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( Y = ( X + ( K x. ( abs ` D ) ) ) -> K = 0 ) ) |
| 57 |
23 56
|
sylbid |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> K = 0 ) ) |
| 58 |
|
oveq1 |
|- ( K = 0 -> ( K x. ( abs ` D ) ) = ( 0 x. ( abs ` D ) ) ) |
| 59 |
11
|
nncni |
|- ( abs ` D ) e. CC |
| 60 |
59
|
mul02i |
|- ( 0 x. ( abs ` D ) ) = 0 |
| 61 |
58 60
|
eqtrdi |
|- ( K = 0 -> ( K x. ( abs ` D ) ) = 0 ) |
| 62 |
61
|
eqeq1d |
|- ( K = 0 -> ( ( K x. ( abs ` D ) ) = ( Y - X ) <-> 0 = ( Y - X ) ) ) |
| 63 |
62
|
biimpac |
|- ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> 0 = ( Y - X ) ) |
| 64 |
|
subeq0 |
|- ( ( Y e. CC /\ X e. CC ) -> ( ( Y - X ) = 0 <-> Y = X ) ) |
| 65 |
8 9 64
|
syl2anr |
|- ( ( X e. S /\ Y e. S ) -> ( ( Y - X ) = 0 <-> Y = X ) ) |
| 66 |
|
eqcom |
|- ( ( Y - X ) = 0 <-> 0 = ( Y - X ) ) |
| 67 |
|
eqcom |
|- ( Y = X <-> X = Y ) |
| 68 |
65 66 67
|
3bitr3g |
|- ( ( X e. S /\ Y e. S ) -> ( 0 = ( Y - X ) <-> X = Y ) ) |
| 69 |
63 68
|
imbitrid |
|- ( ( X e. S /\ Y e. S ) -> ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> X = Y ) ) |
| 70 |
69
|
ad2ant2r |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) ) -> ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> X = Y ) ) |
| 71 |
70
|
3adant3 |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( ( K x. ( abs ` D ) ) = ( Y - X ) /\ K = 0 ) -> X = Y ) ) |
| 72 |
71
|
expd |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> ( K = 0 -> X = Y ) ) ) |
| 73 |
57 72
|
mpdd |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) /\ K e. ZZ ) -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) |
| 74 |
73
|
3expia |
|- ( ( ( X e. S /\ X < ( abs ` D ) ) /\ ( Y e. S /\ Y < ( abs ` D ) ) ) -> ( K e. ZZ -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) ) |
| 75 |
74
|
an4s |
|- ( ( ( X e. S /\ Y e. S ) /\ ( X < ( abs ` D ) /\ Y < ( abs ` D ) ) ) -> ( K e. ZZ -> ( ( K x. ( abs ` D ) ) = ( Y - X ) -> X = Y ) ) ) |