| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnvre.f |
|- ( ph -> F e. ( X -cn-> RR ) ) |
| 2 |
|
dvcnvre.d |
|- ( ph -> dom ( RR _D F ) = X ) |
| 3 |
|
dvcnvre.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
| 4 |
|
dvcnvre.1 |
|- ( ph -> F : X -1-1-onto-> Y ) |
| 5 |
|
dvcnvre.c |
|- ( ph -> C e. X ) |
| 6 |
|
dvcnvre.r |
|- ( ph -> R e. RR+ ) |
| 7 |
|
dvcnvre.s |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
| 8 |
|
dvbsss |
|- dom ( RR _D F ) C_ RR |
| 9 |
2 8
|
eqsstrrdi |
|- ( ph -> X C_ RR ) |
| 10 |
9 5
|
sseldd |
|- ( ph -> C e. RR ) |
| 11 |
6
|
rpred |
|- ( ph -> R e. RR ) |
| 12 |
10 11
|
resubcld |
|- ( ph -> ( C - R ) e. RR ) |
| 13 |
10 11
|
readdcld |
|- ( ph -> ( C + R ) e. RR ) |
| 14 |
10 6
|
ltsubrpd |
|- ( ph -> ( C - R ) < C ) |
| 15 |
10 6
|
ltaddrpd |
|- ( ph -> C < ( C + R ) ) |
| 16 |
12 10 13 14 15
|
lttrd |
|- ( ph -> ( C - R ) < ( C + R ) ) |
| 17 |
12 13 16
|
ltled |
|- ( ph -> ( C - R ) <_ ( C + R ) ) |
| 18 |
|
rescncf |
|- ( ( ( C - R ) [,] ( C + R ) ) C_ X -> ( F e. ( X -cn-> RR ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) ) |
| 19 |
7 1 18
|
sylc |
|- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) |
| 20 |
12 13 17 19
|
evthicc2 |
|- ( ph -> E. x e. RR E. y e. RR ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) |
| 21 |
|
cncff |
|- ( F e. ( X -cn-> RR ) -> F : X --> RR ) |
| 22 |
1 21
|
syl |
|- ( ph -> F : X --> RR ) |
| 23 |
22 5
|
ffvelcdmd |
|- ( ph -> ( F ` C ) e. RR ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) e. RR ) |
| 25 |
12
|
rexrd |
|- ( ph -> ( C - R ) e. RR* ) |
| 26 |
13
|
rexrd |
|- ( ph -> ( C + R ) e. RR* ) |
| 27 |
|
lbicc2 |
|- ( ( ( C - R ) e. RR* /\ ( C + R ) e. RR* /\ ( C - R ) <_ ( C + R ) ) -> ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
| 28 |
25 26 17 27
|
syl3anc |
|- ( ph -> ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
| 30 |
12 10 14
|
ltled |
|- ( ph -> ( C - R ) <_ C ) |
| 31 |
10 13 15
|
ltled |
|- ( ph -> C <_ ( C + R ) ) |
| 32 |
|
elicc2 |
|- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
| 33 |
12 13 32
|
syl2anc |
|- ( ph -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
| 34 |
10 30 31 33
|
mpbir3and |
|- ( ph -> C e. ( ( C - R ) [,] ( C + R ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> C e. ( ( C - R ) [,] ( C + R ) ) ) |
| 36 |
14
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( C - R ) < C ) |
| 37 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
| 38 |
37
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
| 39 |
38
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
| 40 |
39
|
com4l |
|- ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
| 41 |
29 35 36 40
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
| 42 |
29
|
fvresd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) = ( F ` ( C - R ) ) ) |
| 43 |
35
|
fvresd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) = ( F ` C ) ) |
| 44 |
42 43
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( F ` ( C - R ) ) < ( F ` C ) ) ) |
| 45 |
41 44
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` ( C - R ) ) < ( F ` C ) ) ) |
| 46 |
22
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> F : X --> RR ) |
| 47 |
46
|
ffund |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> Fun F ) |
| 48 |
7
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
| 49 |
46
|
fdmd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> dom F = X ) |
| 50 |
48 49
|
sseqtrrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C - R ) [,] ( C + R ) ) C_ dom F ) |
| 51 |
|
funfvima2 |
|- ( ( Fun F /\ ( ( C - R ) [,] ( C + R ) ) C_ dom F ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C - R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 52 |
47 50 51
|
syl2anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C - R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 53 |
29 52
|
mpd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 54 |
|
df-ima |
|- ( F " ( ( C - R ) [,] ( C + R ) ) ) = ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) |
| 55 |
|
simprr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) |
| 56 |
54 55
|
eqtrid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F " ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) |
| 57 |
53 56
|
eleqtrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) e. ( x [,] y ) ) |
| 58 |
|
elicc2 |
|- ( ( x e. RR /\ y e. RR ) -> ( ( F ` ( C - R ) ) e. ( x [,] y ) <-> ( ( F ` ( C - R ) ) e. RR /\ x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) ) ) |
| 59 |
58
|
ad2antrl |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C - R ) ) e. ( x [,] y ) <-> ( ( F ` ( C - R ) ) e. RR /\ x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) ) ) |
| 60 |
57 59
|
mpbid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C - R ) ) e. RR /\ x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) ) |
| 61 |
60
|
simp2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x <_ ( F ` ( C - R ) ) ) |
| 62 |
|
simprll |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x e. RR ) |
| 63 |
7 28
|
sseldd |
|- ( ph -> ( C - R ) e. X ) |
| 64 |
22 63
|
ffvelcdmd |
|- ( ph -> ( F ` ( C - R ) ) e. RR ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) e. RR ) |
| 66 |
|
lelttr |
|- ( ( x e. RR /\ ( F ` ( C - R ) ) e. RR /\ ( F ` C ) e. RR ) -> ( ( x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
| 67 |
62 65 24 66
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( x <_ ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
| 68 |
61 67
|
mpand |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C - R ) ) < ( F ` C ) -> x < ( F ` C ) ) ) |
| 69 |
45 68
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> x < ( F ` C ) ) ) |
| 70 |
|
ubicc2 |
|- ( ( ( C - R ) e. RR* /\ ( C + R ) e. RR* /\ ( C - R ) <_ ( C + R ) ) -> ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
| 71 |
25 26 17 70
|
syl3anc |
|- ( ph -> ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) |
| 73 |
15
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> C < ( C + R ) ) |
| 74 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
| 75 |
74
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
| 76 |
75
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
| 77 |
76
|
com4l |
|- ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
| 78 |
35 72 73 77
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
| 79 |
|
fvex |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) e. _V |
| 80 |
|
fvex |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) e. _V |
| 81 |
79 80
|
brcnv |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) |
| 82 |
72
|
fvresd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) = ( F ` ( C + R ) ) ) |
| 83 |
82 43
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( F ` ( C + R ) ) < ( F ` C ) ) ) |
| 84 |
81 83
|
bitrid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) <-> ( F ` ( C + R ) ) < ( F ` C ) ) ) |
| 85 |
78 84
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` ( C + R ) ) < ( F ` C ) ) ) |
| 86 |
|
funfvima2 |
|- ( ( Fun F /\ ( ( C - R ) [,] ( C + R ) ) C_ dom F ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C + R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 87 |
47 50 86
|
syl2anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` ( C + R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 88 |
72 87
|
mpd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 89 |
88 56
|
eleqtrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) e. ( x [,] y ) ) |
| 90 |
|
elicc2 |
|- ( ( x e. RR /\ y e. RR ) -> ( ( F ` ( C + R ) ) e. ( x [,] y ) <-> ( ( F ` ( C + R ) ) e. RR /\ x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) ) ) |
| 91 |
90
|
ad2antrl |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C + R ) ) e. ( x [,] y ) <-> ( ( F ` ( C + R ) ) e. RR /\ x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) ) ) |
| 92 |
89 91
|
mpbid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C + R ) ) e. RR /\ x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) ) |
| 93 |
92
|
simp2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x <_ ( F ` ( C + R ) ) ) |
| 94 |
7 71
|
sseldd |
|- ( ph -> ( C + R ) e. X ) |
| 95 |
22 94
|
ffvelcdmd |
|- ( ph -> ( F ` ( C + R ) ) e. RR ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) e. RR ) |
| 97 |
|
lelttr |
|- ( ( x e. RR /\ ( F ` ( C + R ) ) e. RR /\ ( F ` C ) e. RR ) -> ( ( x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
| 98 |
62 96 24 97
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( x <_ ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) < ( F ` C ) ) -> x < ( F ` C ) ) ) |
| 99 |
93 98
|
mpand |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` ( C + R ) ) < ( F ` C ) -> x < ( F ` C ) ) ) |
| 100 |
85 99
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> x < ( F ` C ) ) ) |
| 101 |
|
ax-resscn |
|- RR C_ CC |
| 102 |
101
|
a1i |
|- ( ph -> RR C_ CC ) |
| 103 |
|
fss |
|- ( ( F : X --> RR /\ RR C_ CC ) -> F : X --> CC ) |
| 104 |
22 101 103
|
sylancl |
|- ( ph -> F : X --> CC ) |
| 105 |
7 9
|
sstrd |
|- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ RR ) |
| 106 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 107 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 108 |
106 107
|
dvres |
|- ( ( ( RR C_ CC /\ F : X --> CC ) /\ ( X C_ RR /\ ( ( C - R ) [,] ( C + R ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 109 |
102 104 9 105 108
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 110 |
|
iccntr |
|- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
| 111 |
12 13 110
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
| 112 |
111
|
reseq2d |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) ) |
| 113 |
109 112
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) ) |
| 114 |
113
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = dom ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) ) |
| 115 |
|
dmres |
|- dom ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) = ( ( ( C - R ) (,) ( C + R ) ) i^i dom ( RR _D F ) ) |
| 116 |
|
ioossicc |
|- ( ( C - R ) (,) ( C + R ) ) C_ ( ( C - R ) [,] ( C + R ) ) |
| 117 |
116 7
|
sstrid |
|- ( ph -> ( ( C - R ) (,) ( C + R ) ) C_ X ) |
| 118 |
117 2
|
sseqtrrd |
|- ( ph -> ( ( C - R ) (,) ( C + R ) ) C_ dom ( RR _D F ) ) |
| 119 |
|
dfss2 |
|- ( ( ( C - R ) (,) ( C + R ) ) C_ dom ( RR _D F ) <-> ( ( ( C - R ) (,) ( C + R ) ) i^i dom ( RR _D F ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
| 120 |
118 119
|
sylib |
|- ( ph -> ( ( ( C - R ) (,) ( C + R ) ) i^i dom ( RR _D F ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
| 121 |
115 120
|
eqtrid |
|- ( ph -> dom ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
| 122 |
114 121
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( C - R ) (,) ( C + R ) ) ) |
| 123 |
|
resss |
|- ( ( RR _D F ) |` ( ( C - R ) (,) ( C + R ) ) ) C_ ( RR _D F ) |
| 124 |
113 123
|
eqsstrdi |
|- ( ph -> ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( RR _D F ) ) |
| 125 |
|
rnss |
|- ( ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( RR _D F ) -> ran ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ran ( RR _D F ) ) |
| 126 |
124 125
|
syl |
|- ( ph -> ran ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) C_ ran ( RR _D F ) ) |
| 127 |
126 3
|
ssneldd |
|- ( ph -> -. 0 e. ran ( RR _D ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 128 |
12 13 19 122 127
|
dvne0 |
|- ( ph -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) \/ ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) \/ ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
| 130 |
69 100 129
|
mpjaod |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x < ( F ` C ) ) |
| 131 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
| 132 |
131
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( C e. ( ( C - R ) [,] ( C + R ) ) /\ ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
| 133 |
132
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
| 134 |
133
|
com4l |
|- ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C + R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C < ( C + R ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) ) ) |
| 135 |
35 72 73 134
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) ) ) |
| 136 |
43 82
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C + R ) ) <-> ( F ` C ) < ( F ` ( C + R ) ) ) ) |
| 137 |
135 136
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < ( F ` ( C + R ) ) ) ) |
| 138 |
92
|
simp3d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C + R ) ) <_ y ) |
| 139 |
|
simprlr |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> y e. RR ) |
| 140 |
|
ltletr |
|- ( ( ( F ` C ) e. RR /\ ( F ` ( C + R ) ) e. RR /\ y e. RR ) -> ( ( ( F ` C ) < ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) -> ( F ` C ) < y ) ) |
| 141 |
24 96 139 140
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F ` C ) < ( F ` ( C + R ) ) /\ ( F ` ( C + R ) ) <_ y ) -> ( F ` C ) < y ) ) |
| 142 |
138 141
|
mpan2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` C ) < ( F ` ( C + R ) ) -> ( F ` C ) < y ) ) |
| 143 |
137 142
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < y ) ) |
| 144 |
|
isorel |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
| 145 |
144
|
biimpd |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) /\ ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) /\ C e. ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
| 146 |
145
|
exp32 |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
| 147 |
146
|
com4l |
|- ( ( C - R ) e. ( ( C - R ) [,] ( C + R ) ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( ( C - R ) < C -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) ) ) |
| 148 |
29 35 36 147
|
syl3c |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) ) ) |
| 149 |
|
fvex |
|- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) e. _V |
| 150 |
149 79
|
brcnv |
|- ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) ) |
| 151 |
43 42
|
breq12d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) <-> ( F ` C ) < ( F ` ( C - R ) ) ) ) |
| 152 |
150 151
|
bitrid |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` ( C - R ) ) `' < ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) ` C ) <-> ( F ` C ) < ( F ` ( C - R ) ) ) ) |
| 153 |
148 152
|
sylibd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < ( F ` ( C - R ) ) ) ) |
| 154 |
60
|
simp3d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` ( C - R ) ) <_ y ) |
| 155 |
|
ltletr |
|- ( ( ( F ` C ) e. RR /\ ( F ` ( C - R ) ) e. RR /\ y e. RR ) -> ( ( ( F ` C ) < ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) -> ( F ` C ) < y ) ) |
| 156 |
24 65 139 155
|
syl3anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( ( F ` C ) < ( F ` ( C - R ) ) /\ ( F ` ( C - R ) ) <_ y ) -> ( F ` C ) < y ) ) |
| 157 |
154 156
|
mpan2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` C ) < ( F ` ( C - R ) ) -> ( F ` C ) < y ) ) |
| 158 |
153 157
|
syld |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) Isom < , `' < ( ( ( C - R ) [,] ( C + R ) ) , ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F ` C ) < y ) ) |
| 159 |
143 158 129
|
mpjaod |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) < y ) |
| 160 |
62
|
rexrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> x e. RR* ) |
| 161 |
139
|
rexrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> y e. RR* ) |
| 162 |
|
elioo2 |
|- ( ( x e. RR* /\ y e. RR* ) -> ( ( F ` C ) e. ( x (,) y ) <-> ( ( F ` C ) e. RR /\ x < ( F ` C ) /\ ( F ` C ) < y ) ) ) |
| 163 |
160 161 162
|
syl2anc |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( F ` C ) e. ( x (,) y ) <-> ( ( F ` C ) e. RR /\ x < ( F ` C ) /\ ( F ` C ) < y ) ) ) |
| 164 |
24 130 159 163
|
mpbir3and |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) e. ( x (,) y ) ) |
| 165 |
56
|
fveq2d |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) |
| 166 |
|
iccntr |
|- ( ( x e. RR /\ y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
| 167 |
166
|
ad2antrl |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
| 168 |
165 167
|
eqtrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( x (,) y ) ) |
| 169 |
164 168
|
eleqtrrd |
|- ( ( ph /\ ( ( x e. RR /\ y e. RR ) /\ ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) ) ) -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 170 |
169
|
expr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
| 171 |
170
|
rexlimdvva |
|- ( ph -> ( E. x e. RR E. y e. RR ran ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( x [,] y ) -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) ) |
| 172 |
20 171
|
mpd |
|- ( ph -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |