| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm4.42 |  |-  ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) \/ ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) ) ) | 
						
							| 2 |  | ancom |  |-  ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) <-> ( ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) | 
						
							| 3 |  | elmapi |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> a : ( 1 ... 3 ) --> NN0 ) | 
						
							| 4 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 5 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 6 |  | ssid |  |-  ( 1 ... 3 ) C_ ( 1 ... 3 ) | 
						
							| 7 | 5 6 | jm2.27dlem5 |  |-  ( 1 ... 2 ) C_ ( 1 ... 3 ) | 
						
							| 8 | 4 7 | jm2.27dlem5 |  |-  ( 1 ... 1 ) C_ ( 1 ... 3 ) | 
						
							| 9 |  | 1nn |  |-  1 e. NN | 
						
							| 10 | 9 | jm2.27dlem3 |  |-  1 e. ( 1 ... 1 ) | 
						
							| 11 | 8 10 | sselii |  |-  1 e. ( 1 ... 3 ) | 
						
							| 12 |  | ffvelcdm |  |-  ( ( a : ( 1 ... 3 ) --> NN0 /\ 1 e. ( 1 ... 3 ) ) -> ( a ` 1 ) e. NN0 ) | 
						
							| 13 | 3 11 12 | sylancl |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 1 ) e. NN0 ) | 
						
							| 14 | 13 | adantr |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( a ` 1 ) e. NN0 ) | 
						
							| 15 |  | elnn0 |  |-  ( ( a ` 1 ) e. NN0 <-> ( ( a ` 1 ) e. NN \/ ( a ` 1 ) = 0 ) ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) e. NN \/ ( a ` 1 ) = 0 ) ) | 
						
							| 17 |  | elnn1uz2 |  |-  ( ( a ` 1 ) e. NN <-> ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 18 | 17 | biimpi |  |-  ( ( a ` 1 ) e. NN -> ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 19 | 18 | orim1i |  |-  ( ( ( a ` 1 ) e. NN \/ ( a ` 1 ) = 0 ) -> ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) ) | 
						
							| 20 | 16 19 | syl |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) ) | 
						
							| 21 | 20 | biantrurd |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 22 |  | andir |  |-  ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 23 |  | andir |  |-  ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 24 | 23 | orbi1i |  |-  ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 25 | 22 24 | bitri |  |-  ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 26 |  | nnz |  |-  ( ( a ` 2 ) e. NN -> ( a ` 2 ) e. ZZ ) | 
						
							| 27 |  | 1exp |  |-  ( ( a ` 2 ) e. ZZ -> ( 1 ^ ( a ` 2 ) ) = 1 ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( a ` 2 ) e. NN -> ( 1 ^ ( a ` 2 ) ) = 1 ) | 
						
							| 29 | 28 | adantl |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( 1 ^ ( a ` 2 ) ) = 1 ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( 1 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) | 
						
							| 31 |  | oveq1 |  |-  ( ( a ` 1 ) = 1 -> ( ( a ` 1 ) ^ ( a ` 2 ) ) = ( 1 ^ ( a ` 2 ) ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( ( a ` 1 ) = 1 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = ( 1 ^ ( a ` 2 ) ) ) ) | 
						
							| 33 | 32 | bibi1d |  |-  ( ( a ` 1 ) = 1 -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) <-> ( ( a ` 3 ) = ( 1 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) ) | 
						
							| 34 | 30 33 | syl5ibrcom |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) = 1 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) ) | 
						
							| 35 | 34 | pm5.32d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) ) ) | 
						
							| 36 |  | iba |  |-  ( ( a ` 2 ) e. NN -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) ) ) | 
						
							| 38 | 37 | anbi1d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 39 | 35 38 | orbi12d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) <-> ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) ) | 
						
							| 40 |  | 0exp |  |-  ( ( a ` 2 ) e. NN -> ( 0 ^ ( a ` 2 ) ) = 0 ) | 
						
							| 41 | 40 | adantl |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( 0 ^ ( a ` 2 ) ) = 0 ) | 
						
							| 42 | 41 | eqeq2d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( 0 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) ) | 
						
							| 43 |  | oveq1 |  |-  ( ( a ` 1 ) = 0 -> ( ( a ` 1 ) ^ ( a ` 2 ) ) = ( 0 ^ ( a ` 2 ) ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( ( a ` 1 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = ( 0 ^ ( a ` 2 ) ) ) ) | 
						
							| 45 | 44 | bibi1d |  |-  ( ( a ` 1 ) = 0 -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) <-> ( ( a ` 3 ) = ( 0 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) ) ) | 
						
							| 46 | 42 45 | syl5ibrcom |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) ) ) | 
						
							| 47 | 46 | pm5.32d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) | 
						
							| 48 | 39 47 | orbi12d |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) | 
						
							| 49 | 25 48 | bitrid |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) | 
						
							| 50 | 21 49 | bitrd |  |-  ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) | 
						
							| 51 | 50 | pm5.32da |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) ) | 
						
							| 52 | 2 51 | bitrid |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) <-> ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) ) | 
						
							| 53 |  | ancom |  |-  ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) <-> ( -. ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) | 
						
							| 54 |  | 2nn |  |-  2 e. NN | 
						
							| 55 | 54 | jm2.27dlem3 |  |-  2 e. ( 1 ... 2 ) | 
						
							| 56 | 7 55 | sselii |  |-  2 e. ( 1 ... 3 ) | 
						
							| 57 |  | ffvelcdm |  |-  ( ( a : ( 1 ... 3 ) --> NN0 /\ 2 e. ( 1 ... 3 ) ) -> ( a ` 2 ) e. NN0 ) | 
						
							| 58 | 3 56 57 | sylancl |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 2 ) e. NN0 ) | 
						
							| 59 |  | elnn0 |  |-  ( ( a ` 2 ) e. NN0 <-> ( ( a ` 2 ) e. NN \/ ( a ` 2 ) = 0 ) ) | 
						
							| 60 |  | pm2.53 |  |-  ( ( ( a ` 2 ) e. NN \/ ( a ` 2 ) = 0 ) -> ( -. ( a ` 2 ) e. NN -> ( a ` 2 ) = 0 ) ) | 
						
							| 61 | 59 60 | sylbi |  |-  ( ( a ` 2 ) e. NN0 -> ( -. ( a ` 2 ) e. NN -> ( a ` 2 ) = 0 ) ) | 
						
							| 62 |  | 0nnn |  |-  -. 0 e. NN | 
						
							| 63 |  | eleq1 |  |-  ( ( a ` 2 ) = 0 -> ( ( a ` 2 ) e. NN <-> 0 e. NN ) ) | 
						
							| 64 | 62 63 | mtbiri |  |-  ( ( a ` 2 ) = 0 -> -. ( a ` 2 ) e. NN ) | 
						
							| 65 | 61 64 | impbid1 |  |-  ( ( a ` 2 ) e. NN0 -> ( -. ( a ` 2 ) e. NN <-> ( a ` 2 ) = 0 ) ) | 
						
							| 66 | 58 65 | syl |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( -. ( a ` 2 ) e. NN <-> ( a ` 2 ) = 0 ) ) | 
						
							| 67 | 66 | anbi1d |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( -. ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) | 
						
							| 68 | 13 | nn0cnd |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 1 ) e. CC ) | 
						
							| 69 | 68 | exp0d |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 1 ) ^ 0 ) = 1 ) | 
						
							| 70 | 69 | eqeq2d |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ 0 ) <-> ( a ` 3 ) = 1 ) ) | 
						
							| 71 |  | oveq2 |  |-  ( ( a ` 2 ) = 0 -> ( ( a ` 1 ) ^ ( a ` 2 ) ) = ( ( a ` 1 ) ^ 0 ) ) | 
						
							| 72 | 71 | eqeq2d |  |-  ( ( a ` 2 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = ( ( a ` 1 ) ^ 0 ) ) ) | 
						
							| 73 | 72 | bibi1d |  |-  ( ( a ` 2 ) = 0 -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) <-> ( ( a ` 3 ) = ( ( a ` 1 ) ^ 0 ) <-> ( a ` 3 ) = 1 ) ) ) | 
						
							| 74 | 70 73 | syl5ibrcom |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 2 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) ) | 
						
							| 75 | 74 | pm5.32d |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) | 
						
							| 76 | 67 75 | bitrd |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( -. ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) | 
						
							| 77 | 53 76 | bitrid |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) | 
						
							| 78 | 52 77 | orbi12d |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) \/ ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) ) <-> ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) ) | 
						
							| 79 | 1 78 | bitrid |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) ) | 
						
							| 80 | 79 | rabbiia |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) } = { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) } | 
						
							| 81 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 82 |  | ovex |  |-  ( 1 ... 3 ) e. _V | 
						
							| 83 |  | mzpproj |  |-  ( ( ( 1 ... 3 ) e. _V /\ 2 e. ( 1 ... 3 ) ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) | 
						
							| 84 | 82 56 83 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) | 
						
							| 85 |  | elnnrabdioph |  |-  ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) e. NN } e. ( Dioph ` 3 ) ) | 
						
							| 86 | 81 84 85 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) e. NN } e. ( Dioph ` 3 ) | 
						
							| 87 |  | mzpproj |  |-  ( ( ( 1 ... 3 ) e. _V /\ 1 e. ( 1 ... 3 ) ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) | 
						
							| 88 | 82 11 87 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) | 
						
							| 89 |  | 1z |  |-  1 e. ZZ | 
						
							| 90 |  | mzpconstmpt |  |-  ( ( ( 1 ... 3 ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) ) | 
						
							| 91 | 82 89 90 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) | 
						
							| 92 |  | eqrabdioph |  |-  ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 1 } e. ( Dioph ` 3 ) ) | 
						
							| 93 | 81 88 91 92 | mp3an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 1 } e. ( Dioph ` 3 ) | 
						
							| 94 |  | 3nn |  |-  3 e. NN | 
						
							| 95 | 94 | jm2.27dlem3 |  |-  3 e. ( 1 ... 3 ) | 
						
							| 96 |  | mzpproj |  |-  ( ( ( 1 ... 3 ) e. _V /\ 3 e. ( 1 ... 3 ) ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) | 
						
							| 97 | 82 95 96 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) | 
						
							| 98 |  | eqrabdioph |  |-  ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) ) | 
						
							| 99 | 81 97 91 98 | mp3an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) | 
						
							| 100 |  | anrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 1 } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) ) | 
						
							| 101 | 93 99 100 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) | 
						
							| 102 |  | expdiophlem2 |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 103 |  | orrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) } e. ( Dioph ` 3 ) ) | 
						
							| 104 | 101 102 103 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 105 |  | eq0rabdioph |  |-  ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 0 } e. ( Dioph ` 3 ) ) | 
						
							| 106 | 81 88 105 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 0 } e. ( Dioph ` 3 ) | 
						
							| 107 |  | eq0rabdioph |  |-  ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 0 } e. ( Dioph ` 3 ) ) | 
						
							| 108 | 81 97 107 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 0 } e. ( Dioph ` 3 ) | 
						
							| 109 |  | anrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 0 } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 0 } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) } e. ( Dioph ` 3 ) ) | 
						
							| 110 | 106 108 109 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) } e. ( Dioph ` 3 ) | 
						
							| 111 |  | orrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) } e. ( Dioph ` 3 ) ) | 
						
							| 112 | 104 110 111 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) } e. ( Dioph ` 3 ) | 
						
							| 113 |  | anrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) e. NN } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) } e. ( Dioph ` 3 ) ) | 
						
							| 114 | 86 112 113 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 115 |  | eq0rabdioph |  |-  ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) = 0 } e. ( Dioph ` 3 ) ) | 
						
							| 116 | 81 84 115 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) = 0 } e. ( Dioph ` 3 ) | 
						
							| 117 |  | anrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) = 0 } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) ) | 
						
							| 118 | 116 99 117 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) | 
						
							| 119 |  | orrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) } e. ( Dioph ` 3 ) ) | 
						
							| 120 | 114 118 119 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) } e. ( Dioph ` 3 ) | 
						
							| 121 | 80 120 | eqeltri |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) } e. ( Dioph ` 3 ) |