Step |
Hyp |
Ref |
Expression |
1 |
|
pm4.42 |
|- ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) \/ ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) ) ) |
2 |
|
ancom |
|- ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) <-> ( ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) |
3 |
|
elmapi |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> a : ( 1 ... 3 ) --> NN0 ) |
4 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
5 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
6 |
|
ssid |
|- ( 1 ... 3 ) C_ ( 1 ... 3 ) |
7 |
5 6
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 3 ) |
8 |
4 7
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 3 ) |
9 |
|
1nn |
|- 1 e. NN |
10 |
9
|
jm2.27dlem3 |
|- 1 e. ( 1 ... 1 ) |
11 |
8 10
|
sselii |
|- 1 e. ( 1 ... 3 ) |
12 |
|
ffvelrn |
|- ( ( a : ( 1 ... 3 ) --> NN0 /\ 1 e. ( 1 ... 3 ) ) -> ( a ` 1 ) e. NN0 ) |
13 |
3 11 12
|
sylancl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 1 ) e. NN0 ) |
14 |
13
|
adantr |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( a ` 1 ) e. NN0 ) |
15 |
|
elnn0 |
|- ( ( a ` 1 ) e. NN0 <-> ( ( a ` 1 ) e. NN \/ ( a ` 1 ) = 0 ) ) |
16 |
14 15
|
sylib |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) e. NN \/ ( a ` 1 ) = 0 ) ) |
17 |
|
elnn1uz2 |
|- ( ( a ` 1 ) e. NN <-> ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
18 |
17
|
biimpi |
|- ( ( a ` 1 ) e. NN -> ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
19 |
18
|
orim1i |
|- ( ( ( a ` 1 ) e. NN \/ ( a ` 1 ) = 0 ) -> ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) ) |
20 |
16 19
|
syl |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) ) |
21 |
20
|
biantrurd |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
22 |
|
andir |
|- ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
23 |
|
andir |
|- ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
24 |
23
|
orbi1i |
|- ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
25 |
22 24
|
bitri |
|- ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
26 |
|
nnz |
|- ( ( a ` 2 ) e. NN -> ( a ` 2 ) e. ZZ ) |
27 |
|
1exp |
|- ( ( a ` 2 ) e. ZZ -> ( 1 ^ ( a ` 2 ) ) = 1 ) |
28 |
26 27
|
syl |
|- ( ( a ` 2 ) e. NN -> ( 1 ^ ( a ` 2 ) ) = 1 ) |
29 |
28
|
adantl |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( 1 ^ ( a ` 2 ) ) = 1 ) |
30 |
29
|
eqeq2d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( 1 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) |
31 |
|
oveq1 |
|- ( ( a ` 1 ) = 1 -> ( ( a ` 1 ) ^ ( a ` 2 ) ) = ( 1 ^ ( a ` 2 ) ) ) |
32 |
31
|
eqeq2d |
|- ( ( a ` 1 ) = 1 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = ( 1 ^ ( a ` 2 ) ) ) ) |
33 |
32
|
bibi1d |
|- ( ( a ` 1 ) = 1 -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) <-> ( ( a ` 3 ) = ( 1 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) ) |
34 |
30 33
|
syl5ibrcom |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) = 1 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) ) |
35 |
34
|
pm5.32d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) ) ) |
36 |
|
iba |
|- ( ( a ` 2 ) e. NN -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) ) ) |
37 |
36
|
adantl |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) ) ) |
38 |
37
|
anbi1d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
39 |
35 38
|
orbi12d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) <-> ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) ) |
40 |
|
0exp |
|- ( ( a ` 2 ) e. NN -> ( 0 ^ ( a ` 2 ) ) = 0 ) |
41 |
40
|
adantl |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( 0 ^ ( a ` 2 ) ) = 0 ) |
42 |
41
|
eqeq2d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( 0 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) ) |
43 |
|
oveq1 |
|- ( ( a ` 1 ) = 0 -> ( ( a ` 1 ) ^ ( a ` 2 ) ) = ( 0 ^ ( a ` 2 ) ) ) |
44 |
43
|
eqeq2d |
|- ( ( a ` 1 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = ( 0 ^ ( a ` 2 ) ) ) ) |
45 |
44
|
bibi1d |
|- ( ( a ` 1 ) = 0 -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) <-> ( ( a ` 3 ) = ( 0 ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) ) ) |
46 |
42 45
|
syl5ibrcom |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 1 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 0 ) ) ) |
47 |
46
|
pm5.32d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) |
48 |
39 47
|
orbi12d |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) \/ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) |
49 |
25 48
|
syl5bb |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( ( ( ( a ` 1 ) = 1 \/ ( a ` 1 ) e. ( ZZ>= ` 2 ) ) \/ ( a ` 1 ) = 0 ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) |
50 |
21 49
|
bitrd |
|- ( ( a e. ( NN0 ^m ( 1 ... 3 ) ) /\ ( a ` 2 ) e. NN ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) |
51 |
50
|
pm5.32da |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) ) |
52 |
2 51
|
syl5bb |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) <-> ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) ) ) |
53 |
|
ancom |
|- ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) <-> ( -. ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) |
54 |
|
2nn |
|- 2 e. NN |
55 |
54
|
jm2.27dlem3 |
|- 2 e. ( 1 ... 2 ) |
56 |
7 55
|
sselii |
|- 2 e. ( 1 ... 3 ) |
57 |
|
ffvelrn |
|- ( ( a : ( 1 ... 3 ) --> NN0 /\ 2 e. ( 1 ... 3 ) ) -> ( a ` 2 ) e. NN0 ) |
58 |
3 56 57
|
sylancl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 2 ) e. NN0 ) |
59 |
|
elnn0 |
|- ( ( a ` 2 ) e. NN0 <-> ( ( a ` 2 ) e. NN \/ ( a ` 2 ) = 0 ) ) |
60 |
|
pm2.53 |
|- ( ( ( a ` 2 ) e. NN \/ ( a ` 2 ) = 0 ) -> ( -. ( a ` 2 ) e. NN -> ( a ` 2 ) = 0 ) ) |
61 |
59 60
|
sylbi |
|- ( ( a ` 2 ) e. NN0 -> ( -. ( a ` 2 ) e. NN -> ( a ` 2 ) = 0 ) ) |
62 |
|
0nnn |
|- -. 0 e. NN |
63 |
|
eleq1 |
|- ( ( a ` 2 ) = 0 -> ( ( a ` 2 ) e. NN <-> 0 e. NN ) ) |
64 |
62 63
|
mtbiri |
|- ( ( a ` 2 ) = 0 -> -. ( a ` 2 ) e. NN ) |
65 |
61 64
|
impbid1 |
|- ( ( a ` 2 ) e. NN0 -> ( -. ( a ` 2 ) e. NN <-> ( a ` 2 ) = 0 ) ) |
66 |
58 65
|
syl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( -. ( a ` 2 ) e. NN <-> ( a ` 2 ) = 0 ) ) |
67 |
66
|
anbi1d |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( -. ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) ) |
68 |
13
|
nn0cnd |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 1 ) e. CC ) |
69 |
68
|
exp0d |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 1 ) ^ 0 ) = 1 ) |
70 |
69
|
eqeq2d |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ 0 ) <-> ( a ` 3 ) = 1 ) ) |
71 |
|
oveq2 |
|- ( ( a ` 2 ) = 0 -> ( ( a ` 1 ) ^ ( a ` 2 ) ) = ( ( a ` 1 ) ^ 0 ) ) |
72 |
71
|
eqeq2d |
|- ( ( a ` 2 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = ( ( a ` 1 ) ^ 0 ) ) ) |
73 |
72
|
bibi1d |
|- ( ( a ` 2 ) = 0 -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) <-> ( ( a ` 3 ) = ( ( a ` 1 ) ^ 0 ) <-> ( a ` 3 ) = 1 ) ) ) |
74 |
70 73
|
syl5ibrcom |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 2 ) = 0 -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( a ` 3 ) = 1 ) ) ) |
75 |
74
|
pm5.32d |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) |
76 |
67 75
|
bitrd |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( -. ( a ` 2 ) e. NN /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) |
77 |
53 76
|
syl5bb |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) <-> ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) |
78 |
52 77
|
orbi12d |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ ( a ` 2 ) e. NN ) \/ ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) /\ -. ( a ` 2 ) e. NN ) ) <-> ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) ) |
79 |
1 78
|
syl5bb |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) <-> ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) ) ) |
80 |
79
|
rabbiia |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) } = { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) } |
81 |
|
3nn0 |
|- 3 e. NN0 |
82 |
|
ovex |
|- ( 1 ... 3 ) e. _V |
83 |
|
mzpproj |
|- ( ( ( 1 ... 3 ) e. _V /\ 2 e. ( 1 ... 3 ) ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) |
84 |
82 56 83
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) |
85 |
|
elnnrabdioph |
|- ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) e. NN } e. ( Dioph ` 3 ) ) |
86 |
81 84 85
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) e. NN } e. ( Dioph ` 3 ) |
87 |
|
mzpproj |
|- ( ( ( 1 ... 3 ) e. _V /\ 1 e. ( 1 ... 3 ) ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) |
88 |
82 11 87
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) |
89 |
|
1z |
|- 1 e. ZZ |
90 |
|
mzpconstmpt |
|- ( ( ( 1 ... 3 ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) ) |
91 |
82 89 90
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) |
92 |
|
eqrabdioph |
|- ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 1 } e. ( Dioph ` 3 ) ) |
93 |
81 88 91 92
|
mp3an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 1 } e. ( Dioph ` 3 ) |
94 |
|
3nn |
|- 3 e. NN |
95 |
94
|
jm2.27dlem3 |
|- 3 e. ( 1 ... 3 ) |
96 |
|
mzpproj |
|- ( ( ( 1 ... 3 ) e. _V /\ 3 e. ( 1 ... 3 ) ) -> ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) |
97 |
82 95 96
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) |
98 |
|
eqrabdioph |
|- ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) ) |
99 |
81 97 91 98
|
mp3an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) |
100 |
|
anrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 1 } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) ) |
101 |
93 99 100
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) |
102 |
|
expdiophlem2 |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |
103 |
|
orrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) } e. ( Dioph ` 3 ) ) |
104 |
101 102 103
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) } e. ( Dioph ` 3 ) |
105 |
|
eq0rabdioph |
|- ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 1 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 0 } e. ( Dioph ` 3 ) ) |
106 |
81 88 105
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 0 } e. ( Dioph ` 3 ) |
107 |
|
eq0rabdioph |
|- ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 3 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 0 } e. ( Dioph ` 3 ) ) |
108 |
81 97 107
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 0 } e. ( Dioph ` 3 ) |
109 |
|
anrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 1 ) = 0 } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 0 } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) } e. ( Dioph ` 3 ) ) |
110 |
106 108 109
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) } e. ( Dioph ` 3 ) |
111 |
|
orrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) } e. ( Dioph ` 3 ) ) |
112 |
104 110 111
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) } e. ( Dioph ` 3 ) |
113 |
|
anrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) e. NN } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) } e. ( Dioph ` 3 ) ) |
114 |
86 112 113
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) } e. ( Dioph ` 3 ) |
115 |
|
eq0rabdioph |
|- ( ( 3 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 3 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 3 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) = 0 } e. ( Dioph ` 3 ) ) |
116 |
81 84 115
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) = 0 } e. ( Dioph ` 3 ) |
117 |
|
anrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 2 ) = 0 } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = 1 } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) ) |
118 |
116 99 117
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) |
119 |
|
orrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) } e. ( Dioph ` 3 ) /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) } e. ( Dioph ` 3 ) ) |
120 |
114 118 119
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 2 ) e. NN /\ ( ( ( ( a ` 1 ) = 1 /\ ( a ` 3 ) = 1 ) \/ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) ) \/ ( ( a ` 1 ) = 0 /\ ( a ` 3 ) = 0 ) ) ) \/ ( ( a ` 2 ) = 0 /\ ( a ` 3 ) = 1 ) ) } e. ( Dioph ` 3 ) |
121 |
80 120
|
eqeltri |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) } e. ( Dioph ` 3 ) |