| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm4.42 | ⊢ ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∨  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ¬  ( 𝑎 ‘ 2 )  ∈  ℕ ) ) ) | 
						
							| 2 |  | ancom | ⊢ ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ↔  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) | 
						
							| 3 |  | elmapi | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ) | 
						
							| 4 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 5 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 6 |  | ssid | ⊢ ( 1 ... 3 )  ⊆  ( 1 ... 3 ) | 
						
							| 7 | 5 6 | jm2.27dlem5 | ⊢ ( 1 ... 2 )  ⊆  ( 1 ... 3 ) | 
						
							| 8 | 4 7 | jm2.27dlem5 | ⊢ ( 1 ... 1 )  ⊆  ( 1 ... 3 ) | 
						
							| 9 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 10 | 9 | jm2.27dlem3 | ⊢ 1  ∈  ( 1 ... 1 ) | 
						
							| 11 | 8 10 | sselii | ⊢ 1  ∈  ( 1 ... 3 ) | 
						
							| 12 |  | ffvelcdm | ⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0  ∧  1  ∈  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 1 )  ∈  ℕ0 ) | 
						
							| 13 | 3 11 12 | sylancl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 1 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( 𝑎 ‘ 1 )  ∈  ℕ0 ) | 
						
							| 15 |  | elnn0 | ⊢ ( ( 𝑎 ‘ 1 )  ∈  ℕ0  ↔  ( ( 𝑎 ‘ 1 )  ∈  ℕ  ∨  ( 𝑎 ‘ 1 )  =  0 ) ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 1 )  ∈  ℕ  ∨  ( 𝑎 ‘ 1 )  =  0 ) ) | 
						
							| 17 |  | elnn1uz2 | ⊢ ( ( 𝑎 ‘ 1 )  ∈  ℕ  ↔  ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 18 | 17 | biimpi | ⊢ ( ( 𝑎 ‘ 1 )  ∈  ℕ  →  ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 19 | 18 | orim1i | ⊢ ( ( ( 𝑎 ‘ 1 )  ∈  ℕ  ∨  ( 𝑎 ‘ 1 )  =  0 )  →  ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∨  ( 𝑎 ‘ 1 )  =  0 ) ) | 
						
							| 20 | 16 19 | syl | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∨  ( 𝑎 ‘ 1 )  =  0 ) ) | 
						
							| 21 | 20 | biantrurd | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∨  ( 𝑎 ‘ 1 )  =  0 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 22 |  | andir | ⊢ ( ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∨  ( 𝑎 ‘ 1 )  =  0 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 23 |  | andir | ⊢ ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 24 | 23 | orbi1i | ⊢ ( ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 25 | 22 24 | bitri | ⊢ ( ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∨  ( 𝑎 ‘ 1 )  =  0 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 26 |  | nnz | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ  →  ( 𝑎 ‘ 2 )  ∈  ℤ ) | 
						
							| 27 |  | 1exp | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℤ  →  ( 1 ↑ ( 𝑎 ‘ 2 ) )  =  1 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ  →  ( 1 ↑ ( 𝑎 ‘ 2 ) )  =  1 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( 1 ↑ ( 𝑎 ‘ 2 ) )  =  1 ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 3 )  =  ( 1 ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  1 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( ( 𝑎 ‘ 1 )  =  1  →  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  =  ( 1 ↑ ( 𝑎 ‘ 2 ) ) ) | 
						
							| 32 | 31 | eqeq2d | ⊢ ( ( 𝑎 ‘ 1 )  =  1  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  ( 1 ↑ ( 𝑎 ‘ 2 ) ) ) ) | 
						
							| 33 | 32 | bibi1d | ⊢ ( ( 𝑎 ‘ 1 )  =  1  →  ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  1 )  ↔  ( ( 𝑎 ‘ 3 )  =  ( 1 ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 34 | 30 33 | syl5ibrcom | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 1 )  =  1  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 35 | 34 | pm5.32d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 36 |  | iba | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ ) ) ) | 
						
							| 38 | 37 | anbi1d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 39 | 35 38 | orbi12d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ↔  ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) ) | 
						
							| 40 |  | 0exp | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ  →  ( 0 ↑ ( 𝑎 ‘ 2 ) )  =  0 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( 0 ↑ ( 𝑎 ‘ 2 ) )  =  0 ) | 
						
							| 42 | 41 | eqeq2d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 3 )  =  ( 0 ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  0 ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( ( 𝑎 ‘ 1 )  =  0  →  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  =  ( 0 ↑ ( 𝑎 ‘ 2 ) ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( ( 𝑎 ‘ 1 )  =  0  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  ( 0 ↑ ( 𝑎 ‘ 2 ) ) ) ) | 
						
							| 45 | 44 | bibi1d | ⊢ ( ( 𝑎 ‘ 1 )  =  0  →  ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  0 )  ↔  ( ( 𝑎 ‘ 3 )  =  ( 0 ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  0 ) ) ) | 
						
							| 46 | 42 45 | syl5ibrcom | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 1 )  =  0  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  0 ) ) ) | 
						
							| 47 | 46 | pm5.32d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) | 
						
							| 48 | 39 47 | orbi12d | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ∨  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) ) | 
						
							| 49 | 25 48 | bitrid | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( ( ( ( 𝑎 ‘ 1 )  =  1  ∨  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) )  ∨  ( 𝑎 ‘ 1 )  =  0 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) ) | 
						
							| 50 | 21 49 | bitrd | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) ) | 
						
							| 51 | 50 | pm5.32da | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) ) ) | 
						
							| 52 | 2 51 | bitrid | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ↔  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) ) ) | 
						
							| 53 |  | ancom | ⊢ ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ¬  ( 𝑎 ‘ 2 )  ∈  ℕ )  ↔  ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) | 
						
							| 54 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 55 | 54 | jm2.27dlem3 | ⊢ 2  ∈  ( 1 ... 2 ) | 
						
							| 56 | 7 55 | sselii | ⊢ 2  ∈  ( 1 ... 3 ) | 
						
							| 57 |  | ffvelcdm | ⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0  ∧  2  ∈  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 58 | 3 56 57 | sylancl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 59 |  | elnn0 | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ0  ↔  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∨  ( 𝑎 ‘ 2 )  =  0 ) ) | 
						
							| 60 |  | pm2.53 | ⊢ ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∨  ( 𝑎 ‘ 2 )  =  0 )  →  ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  →  ( 𝑎 ‘ 2 )  =  0 ) ) | 
						
							| 61 | 59 60 | sylbi | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ0  →  ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  →  ( 𝑎 ‘ 2 )  =  0 ) ) | 
						
							| 62 |  | 0nnn | ⊢ ¬  0  ∈  ℕ | 
						
							| 63 |  | eleq1 | ⊢ ( ( 𝑎 ‘ 2 )  =  0  →  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ↔  0  ∈  ℕ ) ) | 
						
							| 64 | 62 63 | mtbiri | ⊢ ( ( 𝑎 ‘ 2 )  =  0  →  ¬  ( 𝑎 ‘ 2 )  ∈  ℕ ) | 
						
							| 65 | 61 64 | impbid1 | ⊢ ( ( 𝑎 ‘ 2 )  ∈  ℕ0  →  ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  ↔  ( 𝑎 ‘ 2 )  =  0 ) ) | 
						
							| 66 | 58 65 | syl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  ↔  ( 𝑎 ‘ 2 )  =  0 ) ) | 
						
							| 67 | 66 | anbi1d | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 68 | 13 | nn0cnd | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 1 )  ∈  ℂ ) | 
						
							| 69 | 68 | exp0d | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 ) ↑ 0 )  =  1 ) | 
						
							| 70 | 69 | eqeq2d | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ 0 )  ↔  ( 𝑎 ‘ 3 )  =  1 ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( ( 𝑎 ‘ 2 )  =  0  →  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  =  ( ( 𝑎 ‘ 1 ) ↑ 0 ) ) | 
						
							| 72 | 71 | eqeq2d | ⊢ ( ( 𝑎 ‘ 2 )  =  0  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ 0 ) ) ) | 
						
							| 73 | 72 | bibi1d | ⊢ ( ( 𝑎 ‘ 2 )  =  0  →  ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  1 )  ↔  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ 0 )  ↔  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 74 | 70 73 | syl5ibrcom | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 2 )  =  0  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 75 | 74 | pm5.32d | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 76 | 67 75 | bitrd | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ¬  ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 77 | 53 76 | bitrid | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ¬  ( 𝑎 ‘ 2 )  ∈  ℕ )  ↔  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) ) | 
						
							| 78 | 52 77 | orbi12d | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∨  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ∧  ¬  ( 𝑎 ‘ 2 )  ∈  ℕ ) )  ↔  ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) )  ∨  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) ) ) | 
						
							| 79 | 1 78 | bitrid | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) )  ↔  ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) )  ∨  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) ) ) | 
						
							| 80 | 79 | rabbiia | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) )  ∨  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) } | 
						
							| 81 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 82 |  | ovex | ⊢ ( 1 ... 3 )  ∈  V | 
						
							| 83 |  | mzpproj | ⊢ ( ( ( 1 ... 3 )  ∈  V  ∧  2  ∈  ( 1 ... 3 ) )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) ) | 
						
							| 84 | 82 56 83 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) | 
						
							| 85 |  | elnnrabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 2 )  ∈  ℕ }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 86 | 81 84 85 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 2 )  ∈  ℕ }  ∈  ( Dioph ‘ 3 ) | 
						
							| 87 |  | mzpproj | ⊢ ( ( ( 1 ... 3 )  ∈  V  ∧  1  ∈  ( 1 ... 3 ) )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) ) | 
						
							| 88 | 82 11 87 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) | 
						
							| 89 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 90 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 3 )  ∈  V  ∧  1  ∈  ℤ )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) ) | 
						
							| 91 | 82 89 90 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) | 
						
							| 92 |  | eqrabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) )  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 1 )  =  1 }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 93 | 81 88 91 92 | mp3an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 1 )  =  1 }  ∈  ( Dioph ‘ 3 ) | 
						
							| 94 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 95 | 94 | jm2.27dlem3 | ⊢ 3  ∈  ( 1 ... 3 ) | 
						
							| 96 |  | mzpproj | ⊢ ( ( ( 1 ... 3 )  ∈  V  ∧  3  ∈  ( 1 ... 3 ) )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) ) | 
						
							| 97 | 82 95 96 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) | 
						
							| 98 |  | eqrabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) )  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  1 }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 99 | 81 97 91 98 | mp3an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  1 }  ∈  ( Dioph ‘ 3 ) | 
						
							| 100 |  | anrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 1 )  =  1 }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  1 }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 101 | 93 99 100 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 102 |  | expdiophlem2 | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 103 |  | orrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 ) }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 104 | 101 102 103 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 105 |  | eq0rabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 1 )  =  0 }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 106 | 81 88 105 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 1 )  =  0 }  ∈  ( Dioph ‘ 3 ) | 
						
							| 107 |  | eq0rabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  0 }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 108 | 81 97 107 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  0 }  ∈  ( Dioph ‘ 3 ) | 
						
							| 109 |  | anrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 1 )  =  0 }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  0 }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 110 | 106 108 109 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 111 |  | orrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 112 | 104 110 111 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 113 |  | anrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 2 )  ∈  ℕ }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 114 | 86 112 113 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 115 |  | eq0rabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 3 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 3 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 2 )  =  0 }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 116 | 81 84 115 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 2 )  =  0 }  ∈  ( Dioph ‘ 3 ) | 
						
							| 117 |  | anrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 2 )  =  0 }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  1 }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 118 | 116 99 117 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 119 |  | orrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) ) }  ∈  ( Dioph ‘ 3 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) )  ∨  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 120 | 114 118 119 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 2 )  ∈  ℕ  ∧  ( ( ( ( 𝑎 ‘ 1 )  =  1  ∧  ( 𝑎 ‘ 3 )  =  1 )  ∨  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) )  ∨  ( ( 𝑎 ‘ 1 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  0 ) ) )  ∨  ( ( 𝑎 ‘ 2 )  =  0  ∧  ( 𝑎 ‘ 3 )  =  1 ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 121 | 80 120 | eqeltri | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) }  ∈  ( Dioph ‘ 3 ) |