| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm4.42 |
⊢ ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∨ ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ) ) ) |
| 2 |
|
ancom |
⊢ ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ↔ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) |
| 3 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → 𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ) |
| 4 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 5 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 6 |
|
ssid |
⊢ ( 1 ... 3 ) ⊆ ( 1 ... 3 ) |
| 7 |
5 6
|
jm2.27dlem5 |
⊢ ( 1 ... 2 ) ⊆ ( 1 ... 3 ) |
| 8 |
4 7
|
jm2.27dlem5 |
⊢ ( 1 ... 1 ) ⊆ ( 1 ... 3 ) |
| 9 |
|
1nn |
⊢ 1 ∈ ℕ |
| 10 |
9
|
jm2.27dlem3 |
⊢ 1 ∈ ( 1 ... 1 ) |
| 11 |
8 10
|
sselii |
⊢ 1 ∈ ( 1 ... 3 ) |
| 12 |
|
ffvelcdm |
⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ∧ 1 ∈ ( 1 ... 3 ) ) → ( 𝑎 ‘ 1 ) ∈ ℕ0 ) |
| 13 |
3 11 12
|
sylancl |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( 𝑎 ‘ 1 ) ∈ ℕ0 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( 𝑎 ‘ 1 ) ∈ ℕ0 ) |
| 15 |
|
elnn0 |
⊢ ( ( 𝑎 ‘ 1 ) ∈ ℕ0 ↔ ( ( 𝑎 ‘ 1 ) ∈ ℕ ∨ ( 𝑎 ‘ 1 ) = 0 ) ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 1 ) ∈ ℕ ∨ ( 𝑎 ‘ 1 ) = 0 ) ) |
| 17 |
|
elnn1uz2 |
⊢ ( ( 𝑎 ‘ 1 ) ∈ ℕ ↔ ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 18 |
17
|
biimpi |
⊢ ( ( 𝑎 ‘ 1 ) ∈ ℕ → ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 19 |
18
|
orim1i |
⊢ ( ( ( 𝑎 ‘ 1 ) ∈ ℕ ∨ ( 𝑎 ‘ 1 ) = 0 ) → ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∨ ( 𝑎 ‘ 1 ) = 0 ) ) |
| 20 |
16 19
|
syl |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∨ ( 𝑎 ‘ 1 ) = 0 ) ) |
| 21 |
20
|
biantrurd |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∨ ( 𝑎 ‘ 1 ) = 0 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 22 |
|
andir |
⊢ ( ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∨ ( 𝑎 ‘ 1 ) = 0 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 23 |
|
andir |
⊢ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 24 |
23
|
orbi1i |
⊢ ( ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 25 |
22 24
|
bitri |
⊢ ( ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∨ ( 𝑎 ‘ 1 ) = 0 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 26 |
|
nnz |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ → ( 𝑎 ‘ 2 ) ∈ ℤ ) |
| 27 |
|
1exp |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℤ → ( 1 ↑ ( 𝑎 ‘ 2 ) ) = 1 ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ → ( 1 ↑ ( 𝑎 ‘ 2 ) ) = 1 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( 1 ↑ ( 𝑎 ‘ 2 ) ) = 1 ) |
| 30 |
29
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 3 ) = ( 1 ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ) |
| 31 |
|
oveq1 |
⊢ ( ( 𝑎 ‘ 1 ) = 1 → ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) = ( 1 ↑ ( 𝑎 ‘ 2 ) ) ) |
| 32 |
31
|
eqeq2d |
⊢ ( ( 𝑎 ‘ 1 ) = 1 → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = ( 1 ↑ ( 𝑎 ‘ 2 ) ) ) ) |
| 33 |
32
|
bibi1d |
⊢ ( ( 𝑎 ‘ 1 ) = 1 → ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ↔ ( ( 𝑎 ‘ 3 ) = ( 1 ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 34 |
30 33
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 1 ) = 1 → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 35 |
34
|
pm5.32d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 36 |
|
iba |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ → ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ) ) |
| 38 |
37
|
anbi1d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 39 |
35 38
|
orbi12d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ↔ ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) ) |
| 40 |
|
0exp |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ → ( 0 ↑ ( 𝑎 ‘ 2 ) ) = 0 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( 0 ↑ ( 𝑎 ‘ 2 ) ) = 0 ) |
| 42 |
41
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 3 ) = ( 0 ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 0 ) ) |
| 43 |
|
oveq1 |
⊢ ( ( 𝑎 ‘ 1 ) = 0 → ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) = ( 0 ↑ ( 𝑎 ‘ 2 ) ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ( 𝑎 ‘ 1 ) = 0 → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = ( 0 ↑ ( 𝑎 ‘ 2 ) ) ) ) |
| 45 |
44
|
bibi1d |
⊢ ( ( 𝑎 ‘ 1 ) = 0 → ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 0 ) ↔ ( ( 𝑎 ‘ 3 ) = ( 0 ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 0 ) ) ) |
| 46 |
42 45
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 1 ) = 0 → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 0 ) ) ) |
| 47 |
46
|
pm5.32d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) |
| 48 |
39 47
|
orbi12d |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ∨ ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ) |
| 49 |
25 48
|
bitrid |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( ( ( ( 𝑎 ‘ 1 ) = 1 ∨ ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ) ∨ ( 𝑎 ‘ 1 ) = 0 ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ) |
| 50 |
21 49
|
bitrd |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ) |
| 51 |
50
|
pm5.32da |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ) ) |
| 52 |
2 51
|
bitrid |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ↔ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ) ) |
| 53 |
|
ancom |
⊢ ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ) ↔ ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) |
| 54 |
|
2nn |
⊢ 2 ∈ ℕ |
| 55 |
54
|
jm2.27dlem3 |
⊢ 2 ∈ ( 1 ... 2 ) |
| 56 |
7 55
|
sselii |
⊢ 2 ∈ ( 1 ... 3 ) |
| 57 |
|
ffvelcdm |
⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ∧ 2 ∈ ( 1 ... 3 ) ) → ( 𝑎 ‘ 2 ) ∈ ℕ0 ) |
| 58 |
3 56 57
|
sylancl |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( 𝑎 ‘ 2 ) ∈ ℕ0 ) |
| 59 |
|
elnn0 |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ0 ↔ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∨ ( 𝑎 ‘ 2 ) = 0 ) ) |
| 60 |
|
pm2.53 |
⊢ ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∨ ( 𝑎 ‘ 2 ) = 0 ) → ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ → ( 𝑎 ‘ 2 ) = 0 ) ) |
| 61 |
59 60
|
sylbi |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ0 → ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ → ( 𝑎 ‘ 2 ) = 0 ) ) |
| 62 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
| 63 |
|
eleq1 |
⊢ ( ( 𝑎 ‘ 2 ) = 0 → ( ( 𝑎 ‘ 2 ) ∈ ℕ ↔ 0 ∈ ℕ ) ) |
| 64 |
62 63
|
mtbiri |
⊢ ( ( 𝑎 ‘ 2 ) = 0 → ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ) |
| 65 |
61 64
|
impbid1 |
⊢ ( ( 𝑎 ‘ 2 ) ∈ ℕ0 → ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ↔ ( 𝑎 ‘ 2 ) = 0 ) ) |
| 66 |
58 65
|
syl |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ↔ ( 𝑎 ‘ 2 ) = 0 ) ) |
| 67 |
66
|
anbi1d |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ) |
| 68 |
13
|
nn0cnd |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( 𝑎 ‘ 1 ) ∈ ℂ ) |
| 69 |
68
|
exp0d |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 1 ) ↑ 0 ) = 1 ) |
| 70 |
69
|
eqeq2d |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ 0 ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ) |
| 71 |
|
oveq2 |
⊢ ( ( 𝑎 ‘ 2 ) = 0 → ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) = ( ( 𝑎 ‘ 1 ) ↑ 0 ) ) |
| 72 |
71
|
eqeq2d |
⊢ ( ( 𝑎 ‘ 2 ) = 0 → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ 0 ) ) ) |
| 73 |
72
|
bibi1d |
⊢ ( ( 𝑎 ‘ 2 ) = 0 → ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ↔ ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ 0 ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 74 |
70 73
|
syl5ibrcom |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 2 ) = 0 → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 75 |
74
|
pm5.32d |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 76 |
67 75
|
bitrd |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ↔ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 77 |
53 76
|
bitrid |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ) ↔ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) ) |
| 78 |
52 77
|
orbi12d |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∨ ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ∧ ¬ ( 𝑎 ‘ 2 ) ∈ ℕ ) ) ↔ ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ∨ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) ) ) |
| 79 |
1 78
|
bitrid |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) → ( ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ↔ ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ∨ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) ) ) |
| 80 |
79
|
rabbiia |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ∨ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) } |
| 81 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 82 |
|
ovex |
⊢ ( 1 ... 3 ) ∈ V |
| 83 |
|
mzpproj |
⊢ ( ( ( 1 ... 3 ) ∈ V ∧ 2 ∈ ( 1 ... 3 ) ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) |
| 84 |
82 56 83
|
mp2an |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) |
| 85 |
|
elnnrabdioph |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 2 ) ∈ ℕ } ∈ ( Dioph ‘ 3 ) ) |
| 86 |
81 84 85
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 2 ) ∈ ℕ } ∈ ( Dioph ‘ 3 ) |
| 87 |
|
mzpproj |
⊢ ( ( ( 1 ... 3 ) ∈ V ∧ 1 ∈ ( 1 ... 3 ) ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) |
| 88 |
82 11 87
|
mp2an |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) |
| 89 |
|
1z |
⊢ 1 ∈ ℤ |
| 90 |
|
mzpconstmpt |
⊢ ( ( ( 1 ... 3 ) ∈ V ∧ 1 ∈ ℤ ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) |
| 91 |
82 89 90
|
mp2an |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) |
| 92 |
|
eqrabdioph |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 1 ) = 1 } ∈ ( Dioph ‘ 3 ) ) |
| 93 |
81 88 91 92
|
mp3an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 1 ) = 1 } ∈ ( Dioph ‘ 3 ) |
| 94 |
|
3nn |
⊢ 3 ∈ ℕ |
| 95 |
94
|
jm2.27dlem3 |
⊢ 3 ∈ ( 1 ... 3 ) |
| 96 |
|
mzpproj |
⊢ ( ( ( 1 ... 3 ) ∈ V ∧ 3 ∈ ( 1 ... 3 ) ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) |
| 97 |
82 95 96
|
mp2an |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) |
| 98 |
|
eqrabdioph |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 1 } ∈ ( Dioph ‘ 3 ) ) |
| 99 |
81 97 91 98
|
mp3an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 1 } ∈ ( Dioph ‘ 3 ) |
| 100 |
|
anrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 1 ) = 1 } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 1 } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) } ∈ ( Dioph ‘ 3 ) ) |
| 101 |
93 99 100
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) } ∈ ( Dioph ‘ 3 ) |
| 102 |
|
expdiophlem2 |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 3 ) |
| 103 |
|
orrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) } ∈ ( Dioph ‘ 3 ) ) |
| 104 |
101 102 103
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) } ∈ ( Dioph ‘ 3 ) |
| 105 |
|
eq0rabdioph |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 1 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 1 ) = 0 } ∈ ( Dioph ‘ 3 ) ) |
| 106 |
81 88 105
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 1 ) = 0 } ∈ ( Dioph ‘ 3 ) |
| 107 |
|
eq0rabdioph |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 3 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 0 } ∈ ( Dioph ‘ 3 ) ) |
| 108 |
81 97 107
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 0 } ∈ ( Dioph ‘ 3 ) |
| 109 |
|
anrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 1 ) = 0 } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 0 } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) } ∈ ( Dioph ‘ 3 ) ) |
| 110 |
106 108 109
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) } ∈ ( Dioph ‘ 3 ) |
| 111 |
|
orrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) } ∈ ( Dioph ‘ 3 ) ) |
| 112 |
104 110 111
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) } ∈ ( Dioph ‘ 3 ) |
| 113 |
|
anrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 2 ) ∈ ℕ } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) } ∈ ( Dioph ‘ 3 ) ) |
| 114 |
86 112 113
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) } ∈ ( Dioph ‘ 3 ) |
| 115 |
|
eq0rabdioph |
⊢ ( ( 3 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 3 ) ) ↦ ( 𝑎 ‘ 2 ) ) ∈ ( mzPoly ‘ ( 1 ... 3 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 2 ) = 0 } ∈ ( Dioph ‘ 3 ) ) |
| 116 |
81 84 115
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 2 ) = 0 } ∈ ( Dioph ‘ 3 ) |
| 117 |
|
anrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 2 ) = 0 } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = 1 } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) } ∈ ( Dioph ‘ 3 ) ) |
| 118 |
116 99 117
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) } ∈ ( Dioph ‘ 3 ) |
| 119 |
|
orrabdioph |
⊢ ( ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) } ∈ ( Dioph ‘ 3 ) ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) } ∈ ( Dioph ‘ 3 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ∨ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) } ∈ ( Dioph ‘ 3 ) ) |
| 120 |
114 118 119
|
mp2an |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( ( ( 𝑎 ‘ 2 ) ∈ ℕ ∧ ( ( ( ( 𝑎 ‘ 1 ) = 1 ∧ ( 𝑎 ‘ 3 ) = 1 ) ∨ ( ( ( 𝑎 ‘ 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ‘ 2 ) ∈ ℕ ) ∧ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) ) ∨ ( ( 𝑎 ‘ 1 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 0 ) ) ) ∨ ( ( 𝑎 ‘ 2 ) = 0 ∧ ( 𝑎 ‘ 3 ) = 1 ) ) } ∈ ( Dioph ‘ 3 ) |
| 121 |
80 120
|
eqeltri |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 3 ) ) ∣ ( 𝑎 ‘ 3 ) = ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) } ∈ ( Dioph ‘ 3 ) |