| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapi | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  𝑎 : ( 1 ... 3 ) ⟶ ℕ0 ) | 
						
							| 2 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 3 | 2 | jm2.27dlem3 | ⊢ 3  ∈  ( 1 ... 3 ) | 
						
							| 4 |  | ffvelcdm | ⊢ ( ( 𝑎 : ( 1 ... 3 ) ⟶ ℕ0  ∧  3  ∈  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 3 )  ∈  ℕ0 ) | 
						
							| 5 | 1 3 4 | sylancl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 3 )  ∈  ℕ0 ) | 
						
							| 6 |  | expdiophlem1 | ⊢ ( ( 𝑎 ‘ 3 )  ∈  ℕ0  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) )  ↔  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) ) | 
						
							| 8 | 7 | rabbiia | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) } | 
						
							| 9 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 10 |  | fvex | ⊢ ( 𝑒 ‘ 5 )  ∈  V | 
						
							| 11 |  | fvex | ⊢ ( 𝑒 ‘ 6 )  ∈  V | 
						
							| 12 |  | eqeq1 | ⊢ ( 𝑐  =  ( 𝑒 ‘ 5 )  →  ( 𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) ) ) | 
						
							| 13 | 12 | anbi2d | ⊢ ( 𝑐  =  ( 𝑒 ‘ 5 )  →  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑑  =  ( 𝑒 ‘ 6 )  →  ( 𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑑  =  ( 𝑒 ‘ 6 )  →  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  𝑑  =  ( 𝑒 ‘ 6 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑐  =  ( 𝑒 ‘ 5 )  →  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 )  =  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 )  =  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  =  ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) )  =  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) )  ↔  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) | 
						
							| 24 | 23 | anbi2d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) )  ↔  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) | 
						
							| 25 | 17 24 | anbi12d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) )  ↔  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) | 
						
							| 26 | 14 25 | anbi12d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) )  ↔  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) | 
						
							| 27 | 26 | anbi2d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) )  ↔  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 28 | 27 | anbi2d | ⊢ ( ( 𝑐  =  ( 𝑒 ‘ 5 )  ∧  𝑑  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) ) | 
						
							| 29 | 10 11 28 | sbc2ie | ⊢ ( [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 30 | 29 | sbcbii | ⊢ ( [ ( 𝑒 ‘ 4 )  /  𝑏 ] [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  [ ( 𝑒 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 31 | 30 | sbcbii | ⊢ ( [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 32 |  | vex | ⊢ 𝑒  ∈  V | 
						
							| 33 | 32 | resex | ⊢ ( 𝑒  ↾  ( 1 ... 3 ) )  ∈  V | 
						
							| 34 |  | fvex | ⊢ ( 𝑒 ‘ 4 )  ∈  V | 
						
							| 35 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 36 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 37 |  | ssid | ⊢ ( 1 ... 3 )  ⊆  ( 1 ... 3 ) | 
						
							| 38 | 36 37 | jm2.27dlem5 | ⊢ ( 1 ... 2 )  ⊆  ( 1 ... 3 ) | 
						
							| 39 | 35 38 | jm2.27dlem5 | ⊢ ( 1 ... 1 )  ⊆  ( 1 ... 3 ) | 
						
							| 40 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 41 | 40 | jm2.27dlem3 | ⊢ 1  ∈  ( 1 ... 1 ) | 
						
							| 42 | 39 41 | sselii | ⊢ 1  ∈  ( 1 ... 3 ) | 
						
							| 43 | 42 | jm2.27dlem1 | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 1 ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 45 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 46 | 45 | jm2.27dlem3 | ⊢ 2  ∈  ( 1 ... 2 ) | 
						
							| 47 | 46 36 45 | jm2.27dlem2 | ⊢ 2  ∈  ( 1 ... 3 ) | 
						
							| 48 | 47 | jm2.27dlem1 | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 ) ) | 
						
							| 49 | 48 | eleq1d | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 2 )  ∈  ℕ  ↔  ( 𝑒 ‘ 2 )  ∈  ℕ ) ) | 
						
							| 50 | 44 49 | anbi12d | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ↔  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ↔  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ ) ) ) | 
						
							| 52 | 44 | adantr | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 53 |  | id | ⊢ ( 𝑏  =  ( 𝑒 ‘ 4 )  →  𝑏  =  ( 𝑒 ‘ 4 ) ) | 
						
							| 54 | 48 | oveq1d | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 2 )  +  1 )  =  ( ( 𝑒 ‘ 2 )  +  1 ) ) | 
						
							| 55 | 43 54 | oveq12d | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) | 
						
							| 56 | 53 55 | eqeqan12rd | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) )  ↔  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) ) | 
						
							| 57 | 52 56 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ↔  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) ) ) | 
						
							| 58 |  | eleq1 | ⊢ ( 𝑏  =  ( 𝑒 ‘ 4 )  →  ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 60 | 53 48 | oveqan12rd | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) ) | 
						
							| 62 | 59 61 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) ) ) | 
						
							| 63 | 53 48 | oveqan12rd | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) | 
						
							| 64 | 63 | eqeq2d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) ) | 
						
							| 65 | 59 64 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) ) ) | 
						
							| 66 | 3 | jm2.27dlem1 | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 3 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 3 ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑏  =  ( 𝑒 ‘ 4 )  →  ( 2  ·  𝑏 )  =  ( 2  ·  ( 𝑒 ‘ 4 ) ) ) | 
						
							| 69 | 68 43 | oveqan12rd | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  =  ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) ) ) | 
						
							| 70 | 43 | oveq1d | ⊢ ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  →  ( ( 𝑎 ‘ 1 ) ↑ 2 )  =  ( ( 𝑒 ‘ 1 ) ↑ 2 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑎 ‘ 1 ) ↑ 2 )  =  ( ( 𝑒 ‘ 1 ) ↑ 2 ) ) | 
						
							| 72 | 69 71 | oveq12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  =  ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  =  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) ) | 
						
							| 74 | 67 73 | breq12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ↔  ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) ) ) | 
						
							| 75 |  | simpr | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  𝑏  =  ( 𝑒 ‘ 4 ) ) | 
						
							| 76 | 43 | adantr | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 1 ) ) | 
						
							| 77 | 75 76 | oveq12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( 𝑏  −  ( 𝑎 ‘ 1 ) )  =  ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) ) ) | 
						
							| 78 | 77 | oveq1d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) )  =  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  =  ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) ) | 
						
							| 80 | 79 67 | oveq12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) )  =  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) | 
						
							| 81 | 73 80 | breq12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) )  ↔  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) | 
						
							| 82 | 74 81 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) )  ↔  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) | 
						
							| 83 | 65 82 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) )  ↔  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) | 
						
							| 84 | 62 83 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) )  ↔  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) | 
						
							| 85 | 57 84 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) )  ↔  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 86 | 51 85 | anbi12d | ⊢ ( ( 𝑎  =  ( 𝑒  ↾  ( 1 ... 3 ) )  ∧  𝑏  =  ( 𝑒 ‘ 4 ) )  →  ( ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) ) ) | 
						
							| 87 | 33 34 86 | sbc2ie | ⊢ ( [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 88 | 31 87 | bitri | ⊢ ( [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) )  ↔  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) ) | 
						
							| 89 | 88 | rabbii | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) }  =  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) } | 
						
							| 90 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 91 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 92 |  | ovex | ⊢ ( 1 ... 6 )  ∈  V | 
						
							| 93 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 94 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 95 |  | df-6 | ⊢ 6  =  ( 5  +  1 ) | 
						
							| 96 |  | ssid | ⊢ ( 1 ... 6 )  ⊆  ( 1 ... 6 ) | 
						
							| 97 | 95 96 | jm2.27dlem5 | ⊢ ( 1 ... 5 )  ⊆  ( 1 ... 6 ) | 
						
							| 98 | 94 97 | jm2.27dlem5 | ⊢ ( 1 ... 4 )  ⊆  ( 1 ... 6 ) | 
						
							| 99 | 93 98 | jm2.27dlem5 | ⊢ ( 1 ... 3 )  ⊆  ( 1 ... 6 ) | 
						
							| 100 | 36 99 | jm2.27dlem5 | ⊢ ( 1 ... 2 )  ⊆  ( 1 ... 6 ) | 
						
							| 101 | 35 100 | jm2.27dlem5 | ⊢ ( 1 ... 1 )  ⊆  ( 1 ... 6 ) | 
						
							| 102 | 101 41 | sselii | ⊢ 1  ∈  ( 1 ... 6 ) | 
						
							| 103 |  | mzpproj | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  1  ∈  ( 1 ... 6 ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 104 | 92 102 103 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 105 |  | eluzrabdioph | ⊢ ( ( 6  ∈  ℕ0  ∧  2  ∈  ℤ  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 106 | 90 91 104 105 | mp3an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 107 | 100 46 | sselii | ⊢ 2  ∈  ( 1 ... 6 ) | 
						
							| 108 |  | mzpproj | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  2  ∈  ( 1 ... 6 ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 109 | 92 107 108 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 110 |  | elnnrabdioph | ⊢ ( ( 6  ∈  ℕ0  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 2 )  ∈  ℕ }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 111 | 90 109 110 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 2 )  ∈  ℕ }  ∈  ( Dioph ‘ 6 ) | 
						
							| 112 |  | anrabdioph | ⊢ ( ( { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) }  ∈  ( Dioph ‘ 6 )  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 2 )  ∈  ℕ }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 113 | 106 111 112 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 114 |  | elmapi | ⊢ ( 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  →  𝑒 : ( 1 ... 6 ) ⟶ ℕ0 ) | 
						
							| 115 |  | ffvelcdm | ⊢ ( ( 𝑒 : ( 1 ... 6 ) ⟶ ℕ0  ∧  2  ∈  ( 1 ... 6 ) )  →  ( 𝑒 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 116 | 114 107 115 | sylancl | ⊢ ( 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  →  ( 𝑒 ‘ 2 )  ∈  ℕ0 ) | 
						
							| 117 |  | peano2nn0 | ⊢ ( ( 𝑒 ‘ 2 )  ∈  ℕ0  →  ( ( 𝑒 ‘ 2 )  +  1 )  ∈  ℕ0 ) | 
						
							| 118 |  | oveq2 | ⊢ ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  →  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) | 
						
							| 119 | 118 | eqeq2d | ⊢ ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  →  ( ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 )  ↔  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) ) | 
						
							| 120 | 119 | anbi2d | ⊢ ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  →  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) )  ↔  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) ) ) | 
						
							| 121 | 120 | ceqsrexv | ⊢ ( ( ( 𝑒 ‘ 2 )  +  1 )  ∈  ℕ0  →  ( ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) )  ↔  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) ) ) | 
						
							| 122 | 116 117 121 | 3syl | ⊢ ( 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  →  ( ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) )  ↔  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) ) ) | 
						
							| 123 | 122 | bicomd | ⊢ ( 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  →  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ↔  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) ) ) | 
						
							| 124 | 123 | rabbiia | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) }  =  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) } | 
						
							| 125 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 126 | 125 | resex | ⊢ ( 𝑎  ↾  ( 1 ... 6 ) )  ∈  V | 
						
							| 127 |  | fvex | ⊢ ( 𝑎 ‘ 7 )  ∈  V | 
						
							| 128 |  | id | ⊢ ( 𝑏  =  ( 𝑎 ‘ 7 )  →  𝑏  =  ( 𝑎 ‘ 7 ) ) | 
						
							| 129 | 107 | jm2.27dlem1 | ⊢ ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  →  ( 𝑒 ‘ 2 )  =  ( 𝑎 ‘ 2 ) ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  →  ( ( 𝑒 ‘ 2 )  +  1 )  =  ( ( 𝑎 ‘ 2 )  +  1 ) ) | 
						
							| 131 | 128 130 | eqeqan12rd | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ↔  ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 ) ) ) | 
						
							| 132 | 102 | jm2.27dlem1 | ⊢ ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  →  ( 𝑒 ‘ 1 )  =  ( 𝑎 ‘ 1 ) ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( 𝑒 ‘ 1 )  =  ( 𝑎 ‘ 1 ) ) | 
						
							| 134 | 133 | eleq1d | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 135 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 136 | 135 | jm2.27dlem3 | ⊢ 4  ∈  ( 1 ... 4 ) | 
						
							| 137 | 98 136 | sselii | ⊢ 4  ∈  ( 1 ... 6 ) | 
						
							| 138 | 137 | jm2.27dlem1 | ⊢ ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  →  ( 𝑒 ‘ 4 )  =  ( 𝑎 ‘ 4 ) ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( 𝑒 ‘ 4 )  =  ( 𝑎 ‘ 4 ) ) | 
						
							| 140 | 132 128 | oveqan12d | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) | 
						
							| 141 | 139 140 | eqeq12d | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 )  ↔  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) | 
						
							| 142 | 134 141 | anbi12d | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) ) | 
						
							| 143 | 131 142 | anbi12d | ⊢ ( ( 𝑒  =  ( 𝑎  ↾  ( 1 ... 6 ) )  ∧  𝑏  =  ( 𝑎 ‘ 7 ) )  →  ( ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) )  ↔  ( ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 )  ∧  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) ) ) | 
						
							| 144 | 126 127 143 | sbc2ie | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 6 ) )  /  𝑒 ] [ ( 𝑎 ‘ 7 )  /  𝑏 ] ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) )  ↔  ( ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 )  ∧  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) ) | 
						
							| 145 | 144 | rabbii | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  [ ( 𝑎  ↾  ( 1 ... 6 ) )  /  𝑒 ] [ ( 𝑎 ‘ 7 )  /  𝑏 ] ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 )  ∧  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) } | 
						
							| 146 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 147 |  | ovex | ⊢ ( 1 ... 7 )  ∈  V | 
						
							| 148 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 149 | 148 | jm2.27dlem3 | ⊢ 7  ∈  ( 1 ... 7 ) | 
						
							| 150 |  | mzpproj | ⊢ ( ( ( 1 ... 7 )  ∈  V  ∧  7  ∈  ( 1 ... 7 ) )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( 𝑎 ‘ 7 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) ) | 
						
							| 151 | 147 149 150 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( 𝑎 ‘ 7 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) | 
						
							| 152 |  | df-7 | ⊢ 7  =  ( 6  +  1 ) | 
						
							| 153 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 154 | 107 152 153 | jm2.27dlem2 | ⊢ 2  ∈  ( 1 ... 7 ) | 
						
							| 155 |  | mzpproj | ⊢ ( ( ( 1 ... 7 )  ∈  V  ∧  2  ∈  ( 1 ... 7 ) )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) ) | 
						
							| 156 | 147 154 155 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) | 
						
							| 157 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 158 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 7 )  ∈  V  ∧  1  ∈  ℤ )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) ) | 
						
							| 159 | 147 157 158 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) | 
						
							| 160 |  | mzpaddmpt | ⊢ ( ( ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( 𝑎 ‘ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) )  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( ( 𝑎 ‘ 2 )  +  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) ) | 
						
							| 161 | 156 159 160 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( ( 𝑎 ‘ 2 )  +  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) | 
						
							| 162 |  | eqrabdioph | ⊢ ( ( 7  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( 𝑎 ‘ 7 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) )  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 7 ) )  ↦  ( ( 𝑎 ‘ 2 )  +  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 7 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 ) }  ∈  ( Dioph ‘ 7 ) ) | 
						
							| 163 | 146 151 161 162 | mp3an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 ) }  ∈  ( Dioph ‘ 7 ) | 
						
							| 164 |  | rmydioph | ⊢ { 𝑏  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 165 |  | simp1 | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 ) ) | 
						
							| 166 | 165 | eleq1d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 167 |  | simp3 | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) ) | 
						
							| 168 |  | simp2 | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 ) ) | 
						
							| 169 | 165 168 | oveq12d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) | 
						
							| 170 | 167 169 | eqeq12d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) )  ↔  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) | 
						
							| 171 | 166 170 | anbi12d | ⊢ ( ( ( 𝑏 ‘ 1 )  =  ( 𝑎 ‘ 1 )  ∧  ( 𝑏 ‘ 2 )  =  ( 𝑎 ‘ 7 )  ∧  ( 𝑏 ‘ 3 )  =  ( 𝑎 ‘ 4 ) )  →  ( ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) ) )  ↔  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) ) | 
						
							| 172 | 102 152 153 | jm2.27dlem2 | ⊢ 1  ∈  ( 1 ... 7 ) | 
						
							| 173 | 137 152 153 | jm2.27dlem2 | ⊢ 4  ∈  ( 1 ... 7 ) | 
						
							| 174 | 171 172 149 173 | rabren3dioph | ⊢ ( ( 7  ∈  ℕ0  ∧  { 𝑏  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑏 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑏 ‘ 3 )  =  ( ( 𝑏 ‘ 1 )  Yrm  ( 𝑏 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) }  ∈  ( Dioph ‘ 7 ) ) | 
						
							| 175 | 146 164 174 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) }  ∈  ( Dioph ‘ 7 ) | 
						
							| 176 |  | anrabdioph | ⊢ ( ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 ) }  ∈  ( Dioph ‘ 7 )  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) }  ∈  ( Dioph ‘ 7 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 )  ∧  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) }  ∈  ( Dioph ‘ 7 ) ) | 
						
							| 177 | 163 175 176 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  ( ( 𝑎 ‘ 7 )  =  ( ( 𝑎 ‘ 2 )  +  1 )  ∧  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 4 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 7 ) ) ) ) }  ∈  ( Dioph ‘ 7 ) | 
						
							| 178 | 145 177 | eqeltri | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  [ ( 𝑎  ↾  ( 1 ... 6 ) )  /  𝑒 ] [ ( 𝑎 ‘ 7 )  /  𝑏 ] ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) }  ∈  ( Dioph ‘ 7 ) | 
						
							| 179 | 152 | rexfrabdioph | ⊢ ( ( 6  ∈  ℕ0  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 7 ) )  ∣  [ ( 𝑎  ↾  ( 1 ... 6 ) )  /  𝑒 ] [ ( 𝑎 ‘ 7 )  /  𝑏 ] ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) }  ∈  ( Dioph ‘ 7 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 180 | 90 178 179 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ( 𝑏  =  ( ( 𝑒 ‘ 2 )  +  1 )  ∧  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  𝑏 ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 181 | 124 180 | eqeltri | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 182 |  | rmydioph | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 183 |  | simp1 | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 ) ) | 
						
							| 184 | 183 | eleq1d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 185 |  | simp3 | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) ) | 
						
							| 186 |  | simp2 | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 ) ) | 
						
							| 187 | 183 186 | oveq12d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) | 
						
							| 188 | 185 187 | eqeq12d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) ) | 
						
							| 189 | 184 188 | anbi12d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 5 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) ) ) | 
						
							| 190 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 191 | 190 | jm2.27dlem3 | ⊢ 5  ∈  ( 1 ... 5 ) | 
						
							| 192 | 191 95 190 | jm2.27dlem2 | ⊢ 5  ∈  ( 1 ... 6 ) | 
						
							| 193 | 189 137 107 192 | rabren3dioph | ⊢ ( ( 6  ∈  ℕ0  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Yrm  ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 194 | 90 182 193 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 195 |  | rmxdioph | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 196 |  | simp1 | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 ) ) | 
						
							| 197 | 196 | eleq1d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 198 |  | simp3 | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) ) | 
						
							| 199 |  | simp2 | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 ) ) | 
						
							| 200 | 196 199 | oveq12d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) | 
						
							| 201 | 198 200 | eqeq12d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) )  ↔  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) ) | 
						
							| 202 | 197 201 | anbi12d | ⊢ ( ( ( 𝑎 ‘ 1 )  =  ( 𝑒 ‘ 4 )  ∧  ( 𝑎 ‘ 2 )  =  ( 𝑒 ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( 𝑒 ‘ 6 ) )  →  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) )  ↔  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) ) ) | 
						
							| 203 | 153 | jm2.27dlem3 | ⊢ 6  ∈  ( 1 ... 6 ) | 
						
							| 204 | 202 137 107 203 | rabren3dioph | ⊢ ( ( 6  ∈  ℕ0  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 )  Xrm  ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 205 | 90 195 204 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 206 | 99 3 | sselii | ⊢ 3  ∈  ( 1 ... 6 ) | 
						
							| 207 |  | mzpproj | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  3  ∈  ( 1 ... 6 ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 208 | 92 206 207 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 209 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  2  ∈  ℤ )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  2 )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 210 | 92 91 209 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  2 )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 211 |  | mzpproj | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  4  ∈  ( 1 ... 6 ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 212 | 92 137 211 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 213 |  | mzpmulmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  2 )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 2  ·  ( 𝑒 ‘ 4 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 214 | 210 212 213 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 2  ·  ( 𝑒 ‘ 4 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 215 |  | mzpmulmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 2  ·  ( 𝑒 ‘ 4 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 216 | 214 104 215 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 217 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 218 |  | mzpexpmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  2  ∈  ℕ0 )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 219 | 104 217 218 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 220 |  | mzpsubmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 221 | 216 219 220 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 222 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  1  ∈  ℤ )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 223 | 92 157 222 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 224 |  | mzpsubmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 225 | 221 223 224 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 226 |  | ltrabdioph | ⊢ ( ( 6  ∈  ℕ0  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 227 | 90 208 225 226 | mp3an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 228 |  | mzpproj | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  6  ∈  ( 1 ... 6 ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 6 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 229 | 92 203 228 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 6 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 230 |  | mzpsubmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 4 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 231 | 212 104 230 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 232 |  | mzpproj | ⊢ ( ( ( 1 ... 6 )  ∈  V  ∧  5  ∈  ( 1 ... 6 ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 5 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 233 | 92 192 232 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 5 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 234 |  | mzpmulmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 5 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 235 | 231 233 234 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 236 |  | mzpsubmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 6 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 237 | 229 235 236 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 238 |  | mzpsubmpt | ⊢ ( ( ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( 𝑒 ‘ 3 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) ) | 
						
							| 239 | 237 208 238 | mp2an | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) | 
						
							| 240 |  | dvdsrabdioph | ⊢ ( ( 6  ∈  ℕ0  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) )  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( 1 ... 6 ) )  ↦  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) )  ∈  ( mzPoly ‘ ( 1 ... 6 ) ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 241 | 90 225 239 240 | mp3an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 242 |  | anrabdioph | ⊢ ( ( { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 ) }  ∈  ( Dioph ‘ 6 )  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 243 | 227 241 242 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 244 |  | anrabdioph | ⊢ ( ( { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 6 )  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 245 | 205 243 244 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 246 |  | anrabdioph | ⊢ ( ( { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 6 )  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 247 | 194 245 246 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 248 |  | anrabdioph | ⊢ ( ( { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) ) }  ∈  ( Dioph ‘ 6 )  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 249 | 181 247 248 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 250 |  | anrabdioph | ⊢ ( ( { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ ) }  ∈  ( Dioph ‘ 6 )  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) ) | 
						
							| 251 | 113 249 250 | mp2an | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑒 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 4 )  =  ( ( 𝑒 ‘ 1 )  Yrm  ( ( 𝑒 ‘ 2 )  +  1 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 5 )  =  ( ( 𝑒 ‘ 4 )  Yrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( ( 𝑒 ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑒 ‘ 6 )  =  ( ( 𝑒 ‘ 4 )  Xrm  ( 𝑒 ‘ 2 ) ) )  ∧  ( ( 𝑒 ‘ 3 )  <  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  ( 𝑒 ‘ 4 ) )  ·  ( 𝑒 ‘ 1 ) )  −  ( ( 𝑒 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( ( 𝑒 ‘ 6 )  −  ( ( ( 𝑒 ‘ 4 )  −  ( 𝑒 ‘ 1 ) )  ·  ( 𝑒 ‘ 5 ) ) )  −  ( 𝑒 ‘ 3 ) ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 252 | 89 251 | eqeltri | ⊢ { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) | 
						
							| 253 | 93 94 95 | 3rexfrabdioph | ⊢ ( ( 3  ∈  ℕ0  ∧  { 𝑒  ∈  ( ℕ0  ↑m  ( 1 ... 6 ) )  ∣  [ ( 𝑒  ↾  ( 1 ... 3 ) )  /  𝑎 ] [ ( 𝑒 ‘ 4 )  /  𝑏 ] [ ( 𝑒 ‘ 5 )  /  𝑐 ] [ ( 𝑒 ‘ 6 )  /  𝑑 ] ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) }  ∈  ( Dioph ‘ 6 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) }  ∈  ( Dioph ‘ 3 ) ) | 
						
							| 254 | 9 252 253 | mp2an | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ∃ 𝑏  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℕ0 ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  =  ( ( 𝑎 ‘ 1 )  Yrm  ( ( 𝑎 ‘ 2 )  +  1 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑐  =  ( 𝑏  Yrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑏  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑑  =  ( 𝑏  Xrm  ( 𝑎 ‘ 2 ) ) )  ∧  ( ( 𝑎 ‘ 3 )  <  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∧  ( ( ( ( 2  ·  𝑏 )  ·  ( 𝑎 ‘ 1 ) )  −  ( ( 𝑎 ‘ 1 ) ↑ 2 ) )  −  1 )  ∥  ( ( 𝑑  −  ( ( 𝑏  −  ( 𝑎 ‘ 1 ) )  ·  𝑐 ) )  −  ( 𝑎 ‘ 3 ) ) ) ) ) ) ) }  ∈  ( Dioph ‘ 3 ) | 
						
							| 255 | 8 254 | eqeltri | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 3 ) )  ∣  ( ( ( 𝑎 ‘ 1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎 ‘ 2 )  ∈  ℕ )  ∧  ( 𝑎 ‘ 3 )  =  ( ( 𝑎 ‘ 1 ) ↑ ( 𝑎 ‘ 2 ) ) ) }  ∈  ( Dioph ‘ 3 ) |