| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elmapi |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> a : ( 1 ... 3 ) --> NN0 ) |
| 2 |
|
3nn |
|- 3 e. NN |
| 3 |
2
|
jm2.27dlem3 |
|- 3 e. ( 1 ... 3 ) |
| 4 |
|
ffvelcdm |
|- ( ( a : ( 1 ... 3 ) --> NN0 /\ 3 e. ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) |
| 5 |
1 3 4
|
sylancl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) |
| 6 |
|
expdiophlem1 |
|- ( ( a ` 3 ) e. NN0 -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) |
| 7 |
5 6
|
syl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) |
| 8 |
7
|
rabbiia |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } = { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } |
| 9 |
|
3nn0 |
|- 3 e. NN0 |
| 10 |
|
fvex |
|- ( e ` 5 ) e. _V |
| 11 |
|
fvex |
|- ( e ` 6 ) e. _V |
| 12 |
|
eqeq1 |
|- ( c = ( e ` 5 ) -> ( c = ( b rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) |
| 13 |
12
|
anbi2d |
|- ( c = ( e ` 5 ) -> ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) ) |
| 14 |
13
|
adantr |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) ) |
| 15 |
|
eqeq1 |
|- ( d = ( e ` 6 ) -> ( d = ( b rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) |
| 16 |
15
|
anbi2d |
|- ( d = ( e ` 6 ) -> ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) ) |
| 17 |
16
|
adantl |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) ) |
| 18 |
|
simpr |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> d = ( e ` 6 ) ) |
| 19 |
|
oveq2 |
|- ( c = ( e ` 5 ) -> ( ( b - ( a ` 1 ) ) x. c ) = ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) |
| 20 |
19
|
adantr |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b - ( a ` 1 ) ) x. c ) = ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) |
| 21 |
18 20
|
oveq12d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( d - ( ( b - ( a ` 1 ) ) x. c ) ) = ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) = ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) |
| 23 |
22
|
breq2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) <-> ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) |
| 24 |
23
|
anbi2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) <-> ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) |
| 25 |
17 24
|
anbi12d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) <-> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) |
| 26 |
14 25
|
anbi12d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) <-> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) |
| 27 |
26
|
anbi2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
| 28 |
27
|
anbi2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) |
| 29 |
10 11 28
|
sbc2ie |
|- ( [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
| 30 |
29
|
sbcbii |
|- ( [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
| 31 |
30
|
sbcbii |
|- ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
| 32 |
|
vex |
|- e e. _V |
| 33 |
32
|
resex |
|- ( e |` ( 1 ... 3 ) ) e. _V |
| 34 |
|
fvex |
|- ( e ` 4 ) e. _V |
| 35 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 36 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 37 |
|
ssid |
|- ( 1 ... 3 ) C_ ( 1 ... 3 ) |
| 38 |
36 37
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 3 ) |
| 39 |
35 38
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 3 ) |
| 40 |
|
1nn |
|- 1 e. NN |
| 41 |
40
|
jm2.27dlem3 |
|- 1 e. ( 1 ... 1 ) |
| 42 |
39 41
|
sselii |
|- 1 e. ( 1 ... 3 ) |
| 43 |
42
|
jm2.27dlem1 |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 1 ) = ( e ` 1 ) ) |
| 44 |
43
|
eleq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 45 |
|
2nn |
|- 2 e. NN |
| 46 |
45
|
jm2.27dlem3 |
|- 2 e. ( 1 ... 2 ) |
| 47 |
46 36 45
|
jm2.27dlem2 |
|- 2 e. ( 1 ... 3 ) |
| 48 |
47
|
jm2.27dlem1 |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) |
| 49 |
48
|
eleq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 2 ) e. NN <-> ( e ` 2 ) e. NN ) ) |
| 50 |
44 49
|
anbi12d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) ) ) |
| 51 |
50
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) ) ) |
| 52 |
44
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 53 |
|
id |
|- ( b = ( e ` 4 ) -> b = ( e ` 4 ) ) |
| 54 |
48
|
oveq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 2 ) + 1 ) = ( ( e ` 2 ) + 1 ) ) |
| 55 |
43 54
|
oveq12d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) |
| 56 |
53 55
|
eqeqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) <-> ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) |
| 57 |
52 56
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
| 58 |
|
eleq1 |
|- ( b = ( e ` 4 ) -> ( b e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
| 59 |
58
|
adantl |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
| 60 |
53 48
|
oveqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b rmY ( a ` 2 ) ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) |
| 61 |
60
|
eqeq2d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 5 ) = ( b rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) |
| 62 |
59 61
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) ) |
| 63 |
53 48
|
oveqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b rmX ( a ` 2 ) ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) |
| 64 |
63
|
eqeq2d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 6 ) = ( b rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) |
| 65 |
59 64
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) ) |
| 66 |
3
|
jm2.27dlem1 |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 3 ) = ( e ` 3 ) ) |
| 67 |
66
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( a ` 3 ) = ( e ` 3 ) ) |
| 68 |
|
oveq2 |
|- ( b = ( e ` 4 ) -> ( 2 x. b ) = ( 2 x. ( e ` 4 ) ) ) |
| 69 |
68 43
|
oveqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( 2 x. b ) x. ( a ` 1 ) ) = ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) |
| 70 |
43
|
oveq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( e ` 1 ) ^ 2 ) ) |
| 71 |
70
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( e ` 1 ) ^ 2 ) ) |
| 72 |
69 71
|
oveq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) = ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) = ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) |
| 74 |
67 73
|
breq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) <-> ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) ) |
| 75 |
|
simpr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> b = ( e ` 4 ) ) |
| 76 |
43
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( a ` 1 ) = ( e ` 1 ) ) |
| 77 |
75 76
|
oveq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b - ( a ` 1 ) ) = ( ( e ` 4 ) - ( e ` 1 ) ) ) |
| 78 |
77
|
oveq1d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) = ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) |
| 79 |
78
|
oveq2d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) = ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) |
| 80 |
79 67
|
oveq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) = ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) |
| 81 |
73 80
|
breq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) <-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) |
| 82 |
74 81
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) <-> ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) |
| 83 |
65 82
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) <-> ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) |
| 84 |
62 83
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) <-> ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) |
| 85 |
57 84
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) |
| 86 |
51 85
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) ) |
| 87 |
33 34 86
|
sbc2ie |
|- ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) |
| 88 |
31 87
|
bitri |
|- ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) |
| 89 |
88
|
rabbii |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } = { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } |
| 90 |
|
6nn0 |
|- 6 e. NN0 |
| 91 |
|
2z |
|- 2 e. ZZ |
| 92 |
|
ovex |
|- ( 1 ... 6 ) e. _V |
| 93 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 94 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 95 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
| 96 |
|
ssid |
|- ( 1 ... 6 ) C_ ( 1 ... 6 ) |
| 97 |
95 96
|
jm2.27dlem5 |
|- ( 1 ... 5 ) C_ ( 1 ... 6 ) |
| 98 |
94 97
|
jm2.27dlem5 |
|- ( 1 ... 4 ) C_ ( 1 ... 6 ) |
| 99 |
93 98
|
jm2.27dlem5 |
|- ( 1 ... 3 ) C_ ( 1 ... 6 ) |
| 100 |
36 99
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 6 ) |
| 101 |
35 100
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 6 ) |
| 102 |
101 41
|
sselii |
|- 1 e. ( 1 ... 6 ) |
| 103 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 1 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 104 |
92 102 103
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 105 |
|
eluzrabdioph |
|- ( ( 6 e. NN0 /\ 2 e. ZZ /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) ) |
| 106 |
90 91 104 105
|
mp3an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) |
| 107 |
100 46
|
sselii |
|- 2 e. ( 1 ... 6 ) |
| 108 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 2 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 109 |
92 107 108
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 110 |
|
elnnrabdioph |
|- ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) ) |
| 111 |
90 109 110
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) |
| 112 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) ) |
| 113 |
106 111 112
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) |
| 114 |
|
elmapi |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> e : ( 1 ... 6 ) --> NN0 ) |
| 115 |
|
ffvelcdm |
|- ( ( e : ( 1 ... 6 ) --> NN0 /\ 2 e. ( 1 ... 6 ) ) -> ( e ` 2 ) e. NN0 ) |
| 116 |
114 107 115
|
sylancl |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( e ` 2 ) e. NN0 ) |
| 117 |
|
peano2nn0 |
|- ( ( e ` 2 ) e. NN0 -> ( ( e ` 2 ) + 1 ) e. NN0 ) |
| 118 |
|
oveq2 |
|- ( b = ( ( e ` 2 ) + 1 ) -> ( ( e ` 1 ) rmY b ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) |
| 119 |
118
|
eqeq2d |
|- ( b = ( ( e ` 2 ) + 1 ) -> ( ( e ` 4 ) = ( ( e ` 1 ) rmY b ) <-> ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) |
| 120 |
119
|
anbi2d |
|- ( b = ( ( e ` 2 ) + 1 ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
| 121 |
120
|
ceqsrexv |
|- ( ( ( e ` 2 ) + 1 ) e. NN0 -> ( E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
| 122 |
116 117 121
|
3syl |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
| 123 |
122
|
bicomd |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) <-> E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) ) ) |
| 124 |
123
|
rabbiia |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } = { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } |
| 125 |
|
vex |
|- a e. _V |
| 126 |
125
|
resex |
|- ( a |` ( 1 ... 6 ) ) e. _V |
| 127 |
|
fvex |
|- ( a ` 7 ) e. _V |
| 128 |
|
id |
|- ( b = ( a ` 7 ) -> b = ( a ` 7 ) ) |
| 129 |
107
|
jm2.27dlem1 |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 2 ) = ( a ` 2 ) ) |
| 130 |
129
|
oveq1d |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( ( e ` 2 ) + 1 ) = ( ( a ` 2 ) + 1 ) ) |
| 131 |
128 130
|
eqeqan12rd |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( b = ( ( e ` 2 ) + 1 ) <-> ( a ` 7 ) = ( ( a ` 2 ) + 1 ) ) ) |
| 132 |
102
|
jm2.27dlem1 |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 1 ) = ( a ` 1 ) ) |
| 133 |
132
|
adantr |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( e ` 1 ) = ( a ` 1 ) ) |
| 134 |
133
|
eleq1d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) <-> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 135 |
|
4nn |
|- 4 e. NN |
| 136 |
135
|
jm2.27dlem3 |
|- 4 e. ( 1 ... 4 ) |
| 137 |
98 136
|
sselii |
|- 4 e. ( 1 ... 6 ) |
| 138 |
137
|
jm2.27dlem1 |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 4 ) = ( a ` 4 ) ) |
| 139 |
138
|
adantr |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( e ` 4 ) = ( a ` 4 ) ) |
| 140 |
132 128
|
oveqan12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 1 ) rmY b ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) |
| 141 |
139 140
|
eqeq12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 4 ) = ( ( e ` 1 ) rmY b ) <-> ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) |
| 142 |
134 141
|
anbi12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) |
| 143 |
131 142
|
anbi12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) ) |
| 144 |
126 127 143
|
sbc2ie |
|- ( [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) |
| 145 |
144
|
rabbii |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } = { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } |
| 146 |
|
7nn0 |
|- 7 e. NN0 |
| 147 |
|
ovex |
|- ( 1 ... 7 ) e. _V |
| 148 |
|
7nn |
|- 7 e. NN |
| 149 |
148
|
jm2.27dlem3 |
|- 7 e. ( 1 ... 7 ) |
| 150 |
|
mzpproj |
|- ( ( ( 1 ... 7 ) e. _V /\ 7 e. ( 1 ... 7 ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
| 151 |
147 149 150
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) |
| 152 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
| 153 |
|
6nn |
|- 6 e. NN |
| 154 |
107 152 153
|
jm2.27dlem2 |
|- 2 e. ( 1 ... 7 ) |
| 155 |
|
mzpproj |
|- ( ( ( 1 ... 7 ) e. _V /\ 2 e. ( 1 ... 7 ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
| 156 |
147 154 155
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) |
| 157 |
|
1z |
|- 1 e. ZZ |
| 158 |
|
mzpconstmpt |
|- ( ( ( 1 ... 7 ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
| 159 |
147 157 158
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) |
| 160 |
|
mzpaddmpt |
|- ( ( ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
| 161 |
156 159 160
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) |
| 162 |
|
eqrabdioph |
|- ( ( 7 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) ) |
| 163 |
146 151 161 162
|
mp3an |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) |
| 164 |
|
rmydioph |
|- { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) |
| 165 |
|
simp1 |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 1 ) = ( a ` 1 ) ) |
| 166 |
165
|
eleq1d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 1 ) e. ( ZZ>= ` 2 ) <-> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
| 167 |
|
simp3 |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 3 ) = ( a ` 4 ) ) |
| 168 |
|
simp2 |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 2 ) = ( a ` 7 ) ) |
| 169 |
165 168
|
oveq12d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 1 ) rmY ( b ` 2 ) ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) |
| 170 |
167 169
|
eqeq12d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) <-> ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) |
| 171 |
166 170
|
anbi12d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) |
| 172 |
102 152 153
|
jm2.27dlem2 |
|- 1 e. ( 1 ... 7 ) |
| 173 |
137 152 153
|
jm2.27dlem2 |
|- 4 e. ( 1 ... 7 ) |
| 174 |
171 172 149 173
|
rabren3dioph |
|- ( ( 7 e. NN0 /\ { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) ) |
| 175 |
146 164 174
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) |
| 176 |
|
anrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) /\ { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } e. ( Dioph ` 7 ) ) |
| 177 |
163 175 176
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } e. ( Dioph ` 7 ) |
| 178 |
145 177
|
eqeltri |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 7 ) |
| 179 |
152
|
rexfrabdioph |
|- ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 7 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 6 ) ) |
| 180 |
90 178 179
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 6 ) |
| 181 |
124 180
|
eqeltri |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } e. ( Dioph ` 6 ) |
| 182 |
|
rmydioph |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |
| 183 |
|
simp1 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 1 ) = ( e ` 4 ) ) |
| 184 |
183
|
eleq1d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
| 185 |
|
simp3 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 3 ) = ( e ` 5 ) ) |
| 186 |
|
simp2 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) |
| 187 |
183 186
|
oveq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 1 ) rmY ( a ` 2 ) ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) |
| 188 |
185 187
|
eqeq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) |
| 189 |
184 188
|
anbi12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) ) |
| 190 |
|
5nn |
|- 5 e. NN |
| 191 |
190
|
jm2.27dlem3 |
|- 5 e. ( 1 ... 5 ) |
| 192 |
191 95 190
|
jm2.27dlem2 |
|- 5 e. ( 1 ... 6 ) |
| 193 |
189 137 107 192
|
rabren3dioph |
|- ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) ) |
| 194 |
90 182 193
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) |
| 195 |
|
rmxdioph |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |
| 196 |
|
simp1 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 1 ) = ( e ` 4 ) ) |
| 197 |
196
|
eleq1d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
| 198 |
|
simp3 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 3 ) = ( e ` 6 ) ) |
| 199 |
|
simp2 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) |
| 200 |
196 199
|
oveq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 1 ) rmX ( a ` 2 ) ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) |
| 201 |
198 200
|
eqeq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) |
| 202 |
197 201
|
anbi12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) ) |
| 203 |
153
|
jm2.27dlem3 |
|- 6 e. ( 1 ... 6 ) |
| 204 |
202 137 107 203
|
rabren3dioph |
|- ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) ) |
| 205 |
90 195 204
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) |
| 206 |
99 3
|
sselii |
|- 3 e. ( 1 ... 6 ) |
| 207 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 3 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 208 |
92 206 207
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 209 |
|
mzpconstmpt |
|- ( ( ( 1 ... 6 ) e. _V /\ 2 e. ZZ ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 210 |
92 91 209
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 211 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 4 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 212 |
92 137 211
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 213 |
|
mzpmulmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 214 |
210 212 213
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 215 |
|
mzpmulmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 216 |
214 104 215
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 217 |
|
2nn0 |
|- 2 e. NN0 |
| 218 |
|
mzpexpmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ 2 e. NN0 ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 219 |
104 217 218
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 220 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 221 |
216 219 220
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 222 |
|
mzpconstmpt |
|- ( ( ( 1 ... 6 ) e. _V /\ 1 e. ZZ ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 223 |
92 157 222
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 224 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 225 |
221 223 224
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 226 |
|
ltrabdioph |
|- ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) ) |
| 227 |
90 208 225 226
|
mp3an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) |
| 228 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 6 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 229 |
92 203 228
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 230 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 231 |
212 104 230
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 232 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 5 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 233 |
92 192 232
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 234 |
|
mzpmulmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 235 |
231 233 234
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 236 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 237 |
229 235 236
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 238 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
| 239 |
237 208 238
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
| 240 |
|
dvdsrabdioph |
|- ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) ) |
| 241 |
90 225 239 240
|
mp3an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) |
| 242 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) ) |
| 243 |
227 241 242
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) |
| 244 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) ) |
| 245 |
205 243 244
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) |
| 246 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) ) |
| 247 |
194 245 246
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) |
| 248 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) |
| 249 |
181 247 248
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) |
| 250 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) |
| 251 |
113 249 250
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) |
| 252 |
89 251
|
eqeltri |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) |
| 253 |
93 94 95
|
3rexfrabdioph |
|- ( ( 3 e. NN0 /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 3 ) ) |
| 254 |
9 252 253
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 3 ) |
| 255 |
8 254
|
eqeltri |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |