Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> a : ( 1 ... 3 ) --> NN0 ) |
2 |
|
3nn |
|- 3 e. NN |
3 |
2
|
jm2.27dlem3 |
|- 3 e. ( 1 ... 3 ) |
4 |
|
ffvelrn |
|- ( ( a : ( 1 ... 3 ) --> NN0 /\ 3 e. ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) |
5 |
1 3 4
|
sylancl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) |
6 |
|
expdiophlem1 |
|- ( ( a ` 3 ) e. NN0 -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) |
7 |
5 6
|
syl |
|- ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) |
8 |
7
|
rabbiia |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } = { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } |
9 |
|
3nn0 |
|- 3 e. NN0 |
10 |
|
fvex |
|- ( e ` 5 ) e. _V |
11 |
|
fvex |
|- ( e ` 6 ) e. _V |
12 |
|
eqeq1 |
|- ( c = ( e ` 5 ) -> ( c = ( b rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) |
13 |
12
|
anbi2d |
|- ( c = ( e ` 5 ) -> ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) ) |
14 |
13
|
adantr |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) ) |
15 |
|
eqeq1 |
|- ( d = ( e ` 6 ) -> ( d = ( b rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) |
16 |
15
|
anbi2d |
|- ( d = ( e ` 6 ) -> ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) ) |
17 |
16
|
adantl |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) ) |
18 |
|
simpr |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> d = ( e ` 6 ) ) |
19 |
|
oveq2 |
|- ( c = ( e ` 5 ) -> ( ( b - ( a ` 1 ) ) x. c ) = ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) |
20 |
19
|
adantr |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b - ( a ` 1 ) ) x. c ) = ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) |
21 |
18 20
|
oveq12d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( d - ( ( b - ( a ` 1 ) ) x. c ) ) = ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) ) |
22 |
21
|
oveq1d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) = ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) |
23 |
22
|
breq2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) <-> ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) |
24 |
23
|
anbi2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) <-> ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) |
25 |
17 24
|
anbi12d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) <-> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) |
26 |
14 25
|
anbi12d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) <-> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) |
27 |
26
|
anbi2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
28 |
27
|
anbi2d |
|- ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) |
29 |
10 11 28
|
sbc2ie |
|- ( [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
30 |
29
|
sbcbii |
|- ( [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
31 |
30
|
sbcbii |
|- ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) |
32 |
|
vex |
|- e e. _V |
33 |
32
|
resex |
|- ( e |` ( 1 ... 3 ) ) e. _V |
34 |
|
fvex |
|- ( e ` 4 ) e. _V |
35 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
36 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
37 |
|
ssid |
|- ( 1 ... 3 ) C_ ( 1 ... 3 ) |
38 |
36 37
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 3 ) |
39 |
35 38
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 3 ) |
40 |
|
1nn |
|- 1 e. NN |
41 |
40
|
jm2.27dlem3 |
|- 1 e. ( 1 ... 1 ) |
42 |
39 41
|
sselii |
|- 1 e. ( 1 ... 3 ) |
43 |
42
|
jm2.27dlem1 |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 1 ) = ( e ` 1 ) ) |
44 |
43
|
eleq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
45 |
|
2nn |
|- 2 e. NN |
46 |
45
|
jm2.27dlem3 |
|- 2 e. ( 1 ... 2 ) |
47 |
46 36 45
|
jm2.27dlem2 |
|- 2 e. ( 1 ... 3 ) |
48 |
47
|
jm2.27dlem1 |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) |
49 |
48
|
eleq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 2 ) e. NN <-> ( e ` 2 ) e. NN ) ) |
50 |
44 49
|
anbi12d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) ) ) |
51 |
50
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) ) ) |
52 |
44
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
53 |
|
id |
|- ( b = ( e ` 4 ) -> b = ( e ` 4 ) ) |
54 |
48
|
oveq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 2 ) + 1 ) = ( ( e ` 2 ) + 1 ) ) |
55 |
43 54
|
oveq12d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) |
56 |
53 55
|
eqeqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) <-> ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) |
57 |
52 56
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
58 |
|
eleq1 |
|- ( b = ( e ` 4 ) -> ( b e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
59 |
58
|
adantl |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
60 |
53 48
|
oveqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b rmY ( a ` 2 ) ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) |
61 |
60
|
eqeq2d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 5 ) = ( b rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) |
62 |
59 61
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) ) |
63 |
53 48
|
oveqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b rmX ( a ` 2 ) ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) |
64 |
63
|
eqeq2d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 6 ) = ( b rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) |
65 |
59 64
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) ) |
66 |
3
|
jm2.27dlem1 |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 3 ) = ( e ` 3 ) ) |
67 |
66
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( a ` 3 ) = ( e ` 3 ) ) |
68 |
|
oveq2 |
|- ( b = ( e ` 4 ) -> ( 2 x. b ) = ( 2 x. ( e ` 4 ) ) ) |
69 |
68 43
|
oveqan12rd |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( 2 x. b ) x. ( a ` 1 ) ) = ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) |
70 |
43
|
oveq1d |
|- ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( e ` 1 ) ^ 2 ) ) |
71 |
70
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( e ` 1 ) ^ 2 ) ) |
72 |
69 71
|
oveq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) = ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) |
73 |
72
|
oveq1d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) = ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) |
74 |
67 73
|
breq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) <-> ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) ) |
75 |
|
simpr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> b = ( e ` 4 ) ) |
76 |
43
|
adantr |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( a ` 1 ) = ( e ` 1 ) ) |
77 |
75 76
|
oveq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b - ( a ` 1 ) ) = ( ( e ` 4 ) - ( e ` 1 ) ) ) |
78 |
77
|
oveq1d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) = ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) |
79 |
78
|
oveq2d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) = ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) |
80 |
79 67
|
oveq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) = ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) |
81 |
73 80
|
breq12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) <-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) |
82 |
74 81
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) <-> ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) |
83 |
65 82
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) <-> ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) |
84 |
62 83
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) <-> ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) |
85 |
57 84
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) |
86 |
51 85
|
anbi12d |
|- ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) ) |
87 |
33 34 86
|
sbc2ie |
|- ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) |
88 |
31 87
|
bitri |
|- ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) |
89 |
88
|
rabbii |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } = { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } |
90 |
|
6nn0 |
|- 6 e. NN0 |
91 |
|
2z |
|- 2 e. ZZ |
92 |
|
ovex |
|- ( 1 ... 6 ) e. _V |
93 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
94 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
95 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
96 |
|
ssid |
|- ( 1 ... 6 ) C_ ( 1 ... 6 ) |
97 |
95 96
|
jm2.27dlem5 |
|- ( 1 ... 5 ) C_ ( 1 ... 6 ) |
98 |
94 97
|
jm2.27dlem5 |
|- ( 1 ... 4 ) C_ ( 1 ... 6 ) |
99 |
93 98
|
jm2.27dlem5 |
|- ( 1 ... 3 ) C_ ( 1 ... 6 ) |
100 |
36 99
|
jm2.27dlem5 |
|- ( 1 ... 2 ) C_ ( 1 ... 6 ) |
101 |
35 100
|
jm2.27dlem5 |
|- ( 1 ... 1 ) C_ ( 1 ... 6 ) |
102 |
101 41
|
sselii |
|- 1 e. ( 1 ... 6 ) |
103 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 1 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
104 |
92 102 103
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
105 |
|
eluzrabdioph |
|- ( ( 6 e. NN0 /\ 2 e. ZZ /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) ) |
106 |
90 91 104 105
|
mp3an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) |
107 |
100 46
|
sselii |
|- 2 e. ( 1 ... 6 ) |
108 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 2 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
109 |
92 107 108
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
110 |
|
elnnrabdioph |
|- ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) ) |
111 |
90 109 110
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) |
112 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) ) |
113 |
106 111 112
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) |
114 |
|
elmapi |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> e : ( 1 ... 6 ) --> NN0 ) |
115 |
|
ffvelrn |
|- ( ( e : ( 1 ... 6 ) --> NN0 /\ 2 e. ( 1 ... 6 ) ) -> ( e ` 2 ) e. NN0 ) |
116 |
114 107 115
|
sylancl |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( e ` 2 ) e. NN0 ) |
117 |
|
peano2nn0 |
|- ( ( e ` 2 ) e. NN0 -> ( ( e ` 2 ) + 1 ) e. NN0 ) |
118 |
|
oveq2 |
|- ( b = ( ( e ` 2 ) + 1 ) -> ( ( e ` 1 ) rmY b ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) |
119 |
118
|
eqeq2d |
|- ( b = ( ( e ` 2 ) + 1 ) -> ( ( e ` 4 ) = ( ( e ` 1 ) rmY b ) <-> ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) |
120 |
119
|
anbi2d |
|- ( b = ( ( e ` 2 ) + 1 ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
121 |
120
|
ceqsrexv |
|- ( ( ( e ` 2 ) + 1 ) e. NN0 -> ( E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
122 |
116 117 121
|
3syl |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) |
123 |
122
|
bicomd |
|- ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) <-> E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) ) ) |
124 |
123
|
rabbiia |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } = { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } |
125 |
|
vex |
|- a e. _V |
126 |
125
|
resex |
|- ( a |` ( 1 ... 6 ) ) e. _V |
127 |
|
fvex |
|- ( a ` 7 ) e. _V |
128 |
|
id |
|- ( b = ( a ` 7 ) -> b = ( a ` 7 ) ) |
129 |
107
|
jm2.27dlem1 |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 2 ) = ( a ` 2 ) ) |
130 |
129
|
oveq1d |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( ( e ` 2 ) + 1 ) = ( ( a ` 2 ) + 1 ) ) |
131 |
128 130
|
eqeqan12rd |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( b = ( ( e ` 2 ) + 1 ) <-> ( a ` 7 ) = ( ( a ` 2 ) + 1 ) ) ) |
132 |
102
|
jm2.27dlem1 |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 1 ) = ( a ` 1 ) ) |
133 |
132
|
adantr |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( e ` 1 ) = ( a ` 1 ) ) |
134 |
133
|
eleq1d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) <-> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
135 |
|
4nn |
|- 4 e. NN |
136 |
135
|
jm2.27dlem3 |
|- 4 e. ( 1 ... 4 ) |
137 |
98 136
|
sselii |
|- 4 e. ( 1 ... 6 ) |
138 |
137
|
jm2.27dlem1 |
|- ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 4 ) = ( a ` 4 ) ) |
139 |
138
|
adantr |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( e ` 4 ) = ( a ` 4 ) ) |
140 |
132 128
|
oveqan12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 1 ) rmY b ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) |
141 |
139 140
|
eqeq12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 4 ) = ( ( e ` 1 ) rmY b ) <-> ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) |
142 |
134 141
|
anbi12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) |
143 |
131 142
|
anbi12d |
|- ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) ) |
144 |
126 127 143
|
sbc2ie |
|- ( [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) |
145 |
144
|
rabbii |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } = { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } |
146 |
|
7nn0 |
|- 7 e. NN0 |
147 |
|
ovex |
|- ( 1 ... 7 ) e. _V |
148 |
|
7nn |
|- 7 e. NN |
149 |
148
|
jm2.27dlem3 |
|- 7 e. ( 1 ... 7 ) |
150 |
|
mzpproj |
|- ( ( ( 1 ... 7 ) e. _V /\ 7 e. ( 1 ... 7 ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
151 |
147 149 150
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) |
152 |
|
df-7 |
|- 7 = ( 6 + 1 ) |
153 |
|
6nn |
|- 6 e. NN |
154 |
107 152 153
|
jm2.27dlem2 |
|- 2 e. ( 1 ... 7 ) |
155 |
|
mzpproj |
|- ( ( ( 1 ... 7 ) e. _V /\ 2 e. ( 1 ... 7 ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
156 |
147 154 155
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) |
157 |
|
1z |
|- 1 e. ZZ |
158 |
|
mzpconstmpt |
|- ( ( ( 1 ... 7 ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
159 |
147 157 158
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) |
160 |
|
mzpaddmpt |
|- ( ( ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) |
161 |
156 159 160
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) |
162 |
|
eqrabdioph |
|- ( ( 7 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) ) |
163 |
146 151 161 162
|
mp3an |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) |
164 |
|
rmydioph |
|- { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) |
165 |
|
simp1 |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 1 ) = ( a ` 1 ) ) |
166 |
165
|
eleq1d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 1 ) e. ( ZZ>= ` 2 ) <-> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) |
167 |
|
simp3 |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 3 ) = ( a ` 4 ) ) |
168 |
|
simp2 |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 2 ) = ( a ` 7 ) ) |
169 |
165 168
|
oveq12d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 1 ) rmY ( b ` 2 ) ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) |
170 |
167 169
|
eqeq12d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) <-> ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) |
171 |
166 170
|
anbi12d |
|- ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) |
172 |
102 152 153
|
jm2.27dlem2 |
|- 1 e. ( 1 ... 7 ) |
173 |
137 152 153
|
jm2.27dlem2 |
|- 4 e. ( 1 ... 7 ) |
174 |
171 172 149 173
|
rabren3dioph |
|- ( ( 7 e. NN0 /\ { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) ) |
175 |
146 164 174
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) |
176 |
|
anrabdioph |
|- ( ( { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) /\ { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } e. ( Dioph ` 7 ) ) |
177 |
163 175 176
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } e. ( Dioph ` 7 ) |
178 |
145 177
|
eqeltri |
|- { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 7 ) |
179 |
152
|
rexfrabdioph |
|- ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 7 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 6 ) ) |
180 |
90 178 179
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 6 ) |
181 |
124 180
|
eqeltri |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } e. ( Dioph ` 6 ) |
182 |
|
rmydioph |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |
183 |
|
simp1 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 1 ) = ( e ` 4 ) ) |
184 |
183
|
eleq1d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
185 |
|
simp3 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 3 ) = ( e ` 5 ) ) |
186 |
|
simp2 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) |
187 |
183 186
|
oveq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 1 ) rmY ( a ` 2 ) ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) |
188 |
185 187
|
eqeq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) |
189 |
184 188
|
anbi12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) ) |
190 |
|
5nn |
|- 5 e. NN |
191 |
190
|
jm2.27dlem3 |
|- 5 e. ( 1 ... 5 ) |
192 |
191 95 190
|
jm2.27dlem2 |
|- 5 e. ( 1 ... 6 ) |
193 |
189 137 107 192
|
rabren3dioph |
|- ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) ) |
194 |
90 182 193
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) |
195 |
|
rmxdioph |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |
196 |
|
simp1 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 1 ) = ( e ` 4 ) ) |
197 |
196
|
eleq1d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) |
198 |
|
simp3 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 3 ) = ( e ` 6 ) ) |
199 |
|
simp2 |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) |
200 |
196 199
|
oveq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 1 ) rmX ( a ` 2 ) ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) |
201 |
198 200
|
eqeq12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) |
202 |
197 201
|
anbi12d |
|- ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) ) |
203 |
153
|
jm2.27dlem3 |
|- 6 e. ( 1 ... 6 ) |
204 |
202 137 107 203
|
rabren3dioph |
|- ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) ) |
205 |
90 195 204
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) |
206 |
99 3
|
sselii |
|- 3 e. ( 1 ... 6 ) |
207 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 3 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
208 |
92 206 207
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
209 |
|
mzpconstmpt |
|- ( ( ( 1 ... 6 ) e. _V /\ 2 e. ZZ ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
210 |
92 91 209
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) |
211 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 4 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
212 |
92 137 211
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
213 |
|
mzpmulmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
214 |
210 212 213
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
215 |
|
mzpmulmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
216 |
214 104 215
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
217 |
|
2nn0 |
|- 2 e. NN0 |
218 |
|
mzpexpmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ 2 e. NN0 ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
219 |
104 217 218
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
220 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
221 |
216 219 220
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
222 |
|
mzpconstmpt |
|- ( ( ( 1 ... 6 ) e. _V /\ 1 e. ZZ ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
223 |
92 157 222
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) |
224 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
225 |
221 223 224
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
226 |
|
ltrabdioph |
|- ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) ) |
227 |
90 208 225 226
|
mp3an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) |
228 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 6 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
229 |
92 203 228
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
230 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
231 |
212 104 230
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
232 |
|
mzpproj |
|- ( ( ( 1 ... 6 ) e. _V /\ 5 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
233 |
92 192 232
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
234 |
|
mzpmulmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
235 |
231 233 234
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
236 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
237 |
229 235 236
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
238 |
|
mzpsubmpt |
|- ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) |
239 |
237 208 238
|
mp2an |
|- ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) |
240 |
|
dvdsrabdioph |
|- ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) ) |
241 |
90 225 239 240
|
mp3an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) |
242 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) ) |
243 |
227 241 242
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) |
244 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) ) |
245 |
205 243 244
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) |
246 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) ) |
247 |
194 245 246
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) |
248 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) |
249 |
181 247 248
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) |
250 |
|
anrabdioph |
|- ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) |
251 |
113 249 250
|
mp2an |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) |
252 |
89 251
|
eqeltri |
|- { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) |
253 |
93 94 95
|
3rexfrabdioph |
|- ( ( 3 e. NN0 /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 3 ) ) |
254 |
9 252 253
|
mp2an |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 3 ) |
255 |
8 254
|
eqeltri |
|- { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |