| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapi |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> a : ( 1 ... 3 ) --> NN0 ) | 
						
							| 2 |  | 3nn |  |-  3 e. NN | 
						
							| 3 | 2 | jm2.27dlem3 |  |-  3 e. ( 1 ... 3 ) | 
						
							| 4 |  | ffvelcdm |  |-  ( ( a : ( 1 ... 3 ) --> NN0 /\ 3 e. ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) | 
						
							| 5 | 1 3 4 | sylancl |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( a ` 3 ) e. NN0 ) | 
						
							| 6 |  | expdiophlem1 |  |-  ( ( a ` 3 ) e. NN0 -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( a e. ( NN0 ^m ( 1 ... 3 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) <-> E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) | 
						
							| 8 | 7 | rabbiia |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } = { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } | 
						
							| 9 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 10 |  | fvex |  |-  ( e ` 5 ) e. _V | 
						
							| 11 |  | fvex |  |-  ( e ` 6 ) e. _V | 
						
							| 12 |  | eqeq1 |  |-  ( c = ( e ` 5 ) -> ( c = ( b rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) | 
						
							| 13 | 12 | anbi2d |  |-  ( c = ( e ` 5 ) -> ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( d = ( e ` 6 ) -> ( d = ( b rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) | 
						
							| 16 | 15 | anbi2d |  |-  ( d = ( e ` 6 ) -> ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) <-> ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> d = ( e ` 6 ) ) | 
						
							| 19 |  | oveq2 |  |-  ( c = ( e ` 5 ) -> ( ( b - ( a ` 1 ) ) x. c ) = ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( b - ( a ` 1 ) ) x. c ) = ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( d - ( ( b - ( a ` 1 ) ) x. c ) ) = ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) = ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) <-> ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) | 
						
							| 24 | 23 | anbi2d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) <-> ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) | 
						
							| 25 | 17 24 | anbi12d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) <-> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) | 
						
							| 26 | 14 25 | anbi12d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) <-> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) | 
						
							| 27 | 26 | anbi2d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) | 
						
							| 28 | 27 | anbi2d |  |-  ( ( c = ( e ` 5 ) /\ d = ( e ` 6 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) ) | 
						
							| 29 | 10 11 28 | sbc2ie |  |-  ( [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) | 
						
							| 30 | 29 | sbcbii |  |-  ( [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) | 
						
							| 31 | 30 | sbcbii |  |-  ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) ) | 
						
							| 32 |  | vex |  |-  e e. _V | 
						
							| 33 | 32 | resex |  |-  ( e |` ( 1 ... 3 ) ) e. _V | 
						
							| 34 |  | fvex |  |-  ( e ` 4 ) e. _V | 
						
							| 35 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 36 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 37 |  | ssid |  |-  ( 1 ... 3 ) C_ ( 1 ... 3 ) | 
						
							| 38 | 36 37 | jm2.27dlem5 |  |-  ( 1 ... 2 ) C_ ( 1 ... 3 ) | 
						
							| 39 | 35 38 | jm2.27dlem5 |  |-  ( 1 ... 1 ) C_ ( 1 ... 3 ) | 
						
							| 40 |  | 1nn |  |-  1 e. NN | 
						
							| 41 | 40 | jm2.27dlem3 |  |-  1 e. ( 1 ... 1 ) | 
						
							| 42 | 39 41 | sselii |  |-  1 e. ( 1 ... 3 ) | 
						
							| 43 | 42 | jm2.27dlem1 |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 1 ) = ( e ` 1 ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 1 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 45 |  | 2nn |  |-  2 e. NN | 
						
							| 46 | 45 | jm2.27dlem3 |  |-  2 e. ( 1 ... 2 ) | 
						
							| 47 | 46 36 45 | jm2.27dlem2 |  |-  2 e. ( 1 ... 3 ) | 
						
							| 48 | 47 | jm2.27dlem1 |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) | 
						
							| 49 | 48 | eleq1d |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 2 ) e. NN <-> ( e ` 2 ) e. NN ) ) | 
						
							| 50 | 44 49 | anbi12d |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) ) ) | 
						
							| 52 | 44 | adantr |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 1 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 53 |  | id |  |-  ( b = ( e ` 4 ) -> b = ( e ` 4 ) ) | 
						
							| 54 | 48 | oveq1d |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 2 ) + 1 ) = ( ( e ` 2 ) + 1 ) ) | 
						
							| 55 | 43 54 | oveq12d |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) | 
						
							| 56 | 53 55 | eqeqan12rd |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) <-> ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) | 
						
							| 57 | 52 56 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) | 
						
							| 58 |  | eleq1 |  |-  ( b = ( e ` 4 ) -> ( b e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 60 | 53 48 | oveqan12rd |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b rmY ( a ` 2 ) ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) | 
						
							| 61 | 60 | eqeq2d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 5 ) = ( b rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) | 
						
							| 62 | 59 61 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) ) | 
						
							| 63 | 53 48 | oveqan12rd |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b rmX ( a ` 2 ) ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) | 
						
							| 64 | 63 | eqeq2d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 6 ) = ( b rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) | 
						
							| 65 | 59 64 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) ) | 
						
							| 66 | 3 | jm2.27dlem1 |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( a ` 3 ) = ( e ` 3 ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( a ` 3 ) = ( e ` 3 ) ) | 
						
							| 68 |  | oveq2 |  |-  ( b = ( e ` 4 ) -> ( 2 x. b ) = ( 2 x. ( e ` 4 ) ) ) | 
						
							| 69 | 68 43 | oveqan12rd |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( 2 x. b ) x. ( a ` 1 ) ) = ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) | 
						
							| 70 | 43 | oveq1d |  |-  ( a = ( e |` ( 1 ... 3 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( e ` 1 ) ^ 2 ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 1 ) ^ 2 ) = ( ( e ` 1 ) ^ 2 ) ) | 
						
							| 72 | 69 71 | oveq12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) = ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) = ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) | 
						
							| 74 | 67 73 | breq12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) <-> ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) ) | 
						
							| 75 |  | simpr |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> b = ( e ` 4 ) ) | 
						
							| 76 | 43 | adantr |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( a ` 1 ) = ( e ` 1 ) ) | 
						
							| 77 | 75 76 | oveq12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( b - ( a ` 1 ) ) = ( ( e ` 4 ) - ( e ` 1 ) ) ) | 
						
							| 78 | 77 | oveq1d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) = ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) = ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) | 
						
							| 80 | 79 67 | oveq12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) = ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) | 
						
							| 81 | 73 80 | breq12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) <-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) | 
						
							| 82 | 74 81 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) <-> ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) | 
						
							| 83 | 65 82 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) <-> ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) | 
						
							| 84 | 62 83 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) <-> ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) | 
						
							| 85 | 57 84 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) | 
						
							| 86 | 51 85 | anbi12d |  |-  ( ( a = ( e |` ( 1 ... 3 ) ) /\ b = ( e ` 4 ) ) -> ( ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) ) | 
						
							| 87 | 33 34 86 | sbc2ie |  |-  ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( b - ( a ` 1 ) ) x. ( e ` 5 ) ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) | 
						
							| 88 | 31 87 | bitri |  |-  ( [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) <-> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) ) | 
						
							| 89 | 88 | rabbii |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } = { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } | 
						
							| 90 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 91 |  | 2z |  |-  2 e. ZZ | 
						
							| 92 |  | ovex |  |-  ( 1 ... 6 ) e. _V | 
						
							| 93 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 94 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 95 |  | df-6 |  |-  6 = ( 5 + 1 ) | 
						
							| 96 |  | ssid |  |-  ( 1 ... 6 ) C_ ( 1 ... 6 ) | 
						
							| 97 | 95 96 | jm2.27dlem5 |  |-  ( 1 ... 5 ) C_ ( 1 ... 6 ) | 
						
							| 98 | 94 97 | jm2.27dlem5 |  |-  ( 1 ... 4 ) C_ ( 1 ... 6 ) | 
						
							| 99 | 93 98 | jm2.27dlem5 |  |-  ( 1 ... 3 ) C_ ( 1 ... 6 ) | 
						
							| 100 | 36 99 | jm2.27dlem5 |  |-  ( 1 ... 2 ) C_ ( 1 ... 6 ) | 
						
							| 101 | 35 100 | jm2.27dlem5 |  |-  ( 1 ... 1 ) C_ ( 1 ... 6 ) | 
						
							| 102 | 101 41 | sselii |  |-  1 e. ( 1 ... 6 ) | 
						
							| 103 |  | mzpproj |  |-  ( ( ( 1 ... 6 ) e. _V /\ 1 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 104 | 92 102 103 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 105 |  | eluzrabdioph |  |-  ( ( 6 e. NN0 /\ 2 e. ZZ /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) ) | 
						
							| 106 | 90 91 104 105 | mp3an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) | 
						
							| 107 | 100 46 | sselii |  |-  2 e. ( 1 ... 6 ) | 
						
							| 108 |  | mzpproj |  |-  ( ( ( 1 ... 6 ) e. _V /\ 2 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 109 | 92 107 108 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 110 |  | elnnrabdioph |  |-  ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) ) | 
						
							| 111 | 90 109 110 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) | 
						
							| 112 |  | anrabdioph |  |-  ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 1 ) e. ( ZZ>= ` 2 ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 2 ) e. NN } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) ) | 
						
							| 113 | 106 111 112 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) | 
						
							| 114 |  | elmapi |  |-  ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> e : ( 1 ... 6 ) --> NN0 ) | 
						
							| 115 |  | ffvelcdm |  |-  ( ( e : ( 1 ... 6 ) --> NN0 /\ 2 e. ( 1 ... 6 ) ) -> ( e ` 2 ) e. NN0 ) | 
						
							| 116 | 114 107 115 | sylancl |  |-  ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( e ` 2 ) e. NN0 ) | 
						
							| 117 |  | peano2nn0 |  |-  ( ( e ` 2 ) e. NN0 -> ( ( e ` 2 ) + 1 ) e. NN0 ) | 
						
							| 118 |  | oveq2 |  |-  ( b = ( ( e ` 2 ) + 1 ) -> ( ( e ` 1 ) rmY b ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) | 
						
							| 119 | 118 | eqeq2d |  |-  ( b = ( ( e ` 2 ) + 1 ) -> ( ( e ` 4 ) = ( ( e ` 1 ) rmY b ) <-> ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) | 
						
							| 120 | 119 | anbi2d |  |-  ( b = ( ( e ` 2 ) + 1 ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) | 
						
							| 121 | 120 | ceqsrexv |  |-  ( ( ( e ` 2 ) + 1 ) e. NN0 -> ( E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) | 
						
							| 122 | 116 117 121 | 3syl |  |-  ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) ) ) | 
						
							| 123 | 122 | bicomd |  |-  ( e e. ( NN0 ^m ( 1 ... 6 ) ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) <-> E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) ) ) | 
						
							| 124 | 123 | rabbiia |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } = { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } | 
						
							| 125 |  | vex |  |-  a e. _V | 
						
							| 126 | 125 | resex |  |-  ( a |` ( 1 ... 6 ) ) e. _V | 
						
							| 127 |  | fvex |  |-  ( a ` 7 ) e. _V | 
						
							| 128 |  | id |  |-  ( b = ( a ` 7 ) -> b = ( a ` 7 ) ) | 
						
							| 129 | 107 | jm2.27dlem1 |  |-  ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 2 ) = ( a ` 2 ) ) | 
						
							| 130 | 129 | oveq1d |  |-  ( e = ( a |` ( 1 ... 6 ) ) -> ( ( e ` 2 ) + 1 ) = ( ( a ` 2 ) + 1 ) ) | 
						
							| 131 | 128 130 | eqeqan12rd |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( b = ( ( e ` 2 ) + 1 ) <-> ( a ` 7 ) = ( ( a ` 2 ) + 1 ) ) ) | 
						
							| 132 | 102 | jm2.27dlem1 |  |-  ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 1 ) = ( a ` 1 ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( e ` 1 ) = ( a ` 1 ) ) | 
						
							| 134 | 133 | eleq1d |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 1 ) e. ( ZZ>= ` 2 ) <-> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 135 |  | 4nn |  |-  4 e. NN | 
						
							| 136 | 135 | jm2.27dlem3 |  |-  4 e. ( 1 ... 4 ) | 
						
							| 137 | 98 136 | sselii |  |-  4 e. ( 1 ... 6 ) | 
						
							| 138 | 137 | jm2.27dlem1 |  |-  ( e = ( a |` ( 1 ... 6 ) ) -> ( e ` 4 ) = ( a ` 4 ) ) | 
						
							| 139 | 138 | adantr |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( e ` 4 ) = ( a ` 4 ) ) | 
						
							| 140 | 132 128 | oveqan12d |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 1 ) rmY b ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) | 
						
							| 141 | 139 140 | eqeq12d |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( e ` 4 ) = ( ( e ` 1 ) rmY b ) <-> ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) | 
						
							| 142 | 134 141 | anbi12d |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) | 
						
							| 143 | 131 142 | anbi12d |  |-  ( ( e = ( a |` ( 1 ... 6 ) ) /\ b = ( a ` 7 ) ) -> ( ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) ) | 
						
							| 144 | 126 127 143 | sbc2ie |  |-  ( [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) <-> ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) | 
						
							| 145 | 144 | rabbii |  |-  { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } = { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } | 
						
							| 146 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 147 |  | ovex |  |-  ( 1 ... 7 ) e. _V | 
						
							| 148 |  | 7nn |  |-  7 e. NN | 
						
							| 149 | 148 | jm2.27dlem3 |  |-  7 e. ( 1 ... 7 ) | 
						
							| 150 |  | mzpproj |  |-  ( ( ( 1 ... 7 ) e. _V /\ 7 e. ( 1 ... 7 ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) | 
						
							| 151 | 147 149 150 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) | 
						
							| 152 |  | df-7 |  |-  7 = ( 6 + 1 ) | 
						
							| 153 |  | 6nn |  |-  6 e. NN | 
						
							| 154 | 107 152 153 | jm2.27dlem2 |  |-  2 e. ( 1 ... 7 ) | 
						
							| 155 |  | mzpproj |  |-  ( ( ( 1 ... 7 ) e. _V /\ 2 e. ( 1 ... 7 ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) | 
						
							| 156 | 147 154 155 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) | 
						
							| 157 |  | 1z |  |-  1 e. ZZ | 
						
							| 158 |  | mzpconstmpt |  |-  ( ( ( 1 ... 7 ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) ) | 
						
							| 159 | 147 157 158 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) | 
						
							| 160 |  | mzpaddmpt |  |-  ( ( ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 2 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 7 ) ) ) -> ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) | 
						
							| 161 | 156 159 160 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) | 
						
							| 162 |  | eqrabdioph |  |-  ( ( 7 e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( a ` 7 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) /\ ( a e. ( ZZ ^m ( 1 ... 7 ) ) |-> ( ( a ` 2 ) + 1 ) ) e. ( mzPoly ` ( 1 ... 7 ) ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) ) | 
						
							| 163 | 146 151 161 162 | mp3an |  |-  { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) | 
						
							| 164 |  | rmydioph |  |-  { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 165 |  | simp1 |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 1 ) = ( a ` 1 ) ) | 
						
							| 166 | 165 | eleq1d |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 1 ) e. ( ZZ>= ` 2 ) <-> ( a ` 1 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 167 |  | simp3 |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 3 ) = ( a ` 4 ) ) | 
						
							| 168 |  | simp2 |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( b ` 2 ) = ( a ` 7 ) ) | 
						
							| 169 | 165 168 | oveq12d |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 1 ) rmY ( b ` 2 ) ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) | 
						
							| 170 | 167 169 | eqeq12d |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) <-> ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) | 
						
							| 171 | 166 170 | anbi12d |  |-  ( ( ( b ` 1 ) = ( a ` 1 ) /\ ( b ` 2 ) = ( a ` 7 ) /\ ( b ` 3 ) = ( a ` 4 ) ) -> ( ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) <-> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) ) | 
						
							| 172 | 102 152 153 | jm2.27dlem2 |  |-  1 e. ( 1 ... 7 ) | 
						
							| 173 | 137 152 153 | jm2.27dlem2 |  |-  4 e. ( 1 ... 7 ) | 
						
							| 174 | 171 172 149 173 | rabren3dioph |  |-  ( ( 7 e. NN0 /\ { b e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( b ` 1 ) e. ( ZZ>= ` 2 ) /\ ( b ` 3 ) = ( ( b ` 1 ) rmY ( b ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) ) | 
						
							| 175 | 146 164 174 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) | 
						
							| 176 |  | anrabdioph |  |-  ( ( { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( a ` 7 ) = ( ( a ` 2 ) + 1 ) } e. ( Dioph ` 7 ) /\ { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) } e. ( Dioph ` 7 ) ) -> { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } e. ( Dioph ` 7 ) ) | 
						
							| 177 | 163 175 176 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 7 ) ) | ( ( a ` 7 ) = ( ( a ` 2 ) + 1 ) /\ ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 4 ) = ( ( a ` 1 ) rmY ( a ` 7 ) ) ) ) } e. ( Dioph ` 7 ) | 
						
							| 178 | 145 177 | eqeltri |  |-  { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 7 ) | 
						
							| 179 | 152 | rexfrabdioph |  |-  ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 7 ) ) | [. ( a |` ( 1 ... 6 ) ) / e ]. [. ( a ` 7 ) / b ]. ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 7 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 180 | 90 178 179 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | E. b e. NN0 ( b = ( ( e ` 2 ) + 1 ) /\ ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY b ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 181 | 124 180 | eqeltri |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 182 |  | rmydioph |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 183 |  | simp1 |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 1 ) = ( e ` 4 ) ) | 
						
							| 184 | 183 | eleq1d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 185 |  | simp3 |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 3 ) = ( e ` 5 ) ) | 
						
							| 186 |  | simp2 |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) | 
						
							| 187 | 183 186 | oveq12d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 1 ) rmY ( a ` 2 ) ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) | 
						
							| 188 | 185 187 | eqeq12d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) <-> ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) | 
						
							| 189 | 184 188 | anbi12d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 5 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) ) ) | 
						
							| 190 |  | 5nn |  |-  5 e. NN | 
						
							| 191 | 190 | jm2.27dlem3 |  |-  5 e. ( 1 ... 5 ) | 
						
							| 192 | 191 95 190 | jm2.27dlem2 |  |-  5 e. ( 1 ... 6 ) | 
						
							| 193 | 189 137 107 192 | rabren3dioph |  |-  ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmY ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 194 | 90 182 193 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 195 |  | rmxdioph |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 196 |  | simp1 |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 1 ) = ( e ` 4 ) ) | 
						
							| 197 | 196 | eleq1d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 1 ) e. ( ZZ>= ` 2 ) <-> ( e ` 4 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 198 |  | simp3 |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 3 ) = ( e ` 6 ) ) | 
						
							| 199 |  | simp2 |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( a ` 2 ) = ( e ` 2 ) ) | 
						
							| 200 | 196 199 | oveq12d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 1 ) rmX ( a ` 2 ) ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) | 
						
							| 201 | 198 200 | eqeq12d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) <-> ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) | 
						
							| 202 | 197 201 | anbi12d |  |-  ( ( ( a ` 1 ) = ( e ` 4 ) /\ ( a ` 2 ) = ( e ` 2 ) /\ ( a ` 3 ) = ( e ` 6 ) ) -> ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) <-> ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) ) ) | 
						
							| 203 | 153 | jm2.27dlem3 |  |-  6 e. ( 1 ... 6 ) | 
						
							| 204 | 202 137 107 203 | rabren3dioph |  |-  ( ( 6 e. NN0 /\ { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 3 ) = ( ( a ` 1 ) rmX ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 205 | 90 195 204 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 206 | 99 3 | sselii |  |-  3 e. ( 1 ... 6 ) | 
						
							| 207 |  | mzpproj |  |-  ( ( ( 1 ... 6 ) e. _V /\ 3 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 208 | 92 206 207 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 209 |  | mzpconstmpt |  |-  ( ( ( 1 ... 6 ) e. _V /\ 2 e. ZZ ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 210 | 92 91 209 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 211 |  | mzpproj |  |-  ( ( ( 1 ... 6 ) e. _V /\ 4 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 212 | 92 137 211 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 213 |  | mzpmulmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 2 ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 214 | 210 212 213 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 215 |  | mzpmulmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( 2 x. ( e ` 4 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 216 | 214 104 215 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 217 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 218 |  | mzpexpmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ 2 e. NN0 ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 219 | 104 217 218 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 220 |  | mzpsubmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 1 ) ^ 2 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 221 | 216 219 220 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 222 |  | mzpconstmpt |  |-  ( ( ( 1 ... 6 ) e. _V /\ 1 e. ZZ ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 223 | 92 157 222 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 224 |  | mzpsubmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 225 | 221 223 224 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 226 |  | ltrabdioph |  |-  ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) ) | 
						
							| 227 | 90 208 225 226 | mp3an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) | 
						
							| 228 |  | mzpproj |  |-  ( ( ( 1 ... 6 ) e. _V /\ 6 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 229 | 92 203 228 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 230 |  | mzpsubmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 4 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 231 | 212 104 230 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 232 |  | mzpproj |  |-  ( ( ( 1 ... 6 ) e. _V /\ 5 e. ( 1 ... 6 ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 233 | 92 192 232 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 234 |  | mzpmulmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 4 ) - ( e ` 1 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 5 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 235 | 231 233 234 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 236 |  | mzpsubmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 6 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 237 | 229 235 236 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 238 |  | mzpsubmpt |  |-  ( ( ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( e ` 3 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) | 
						
							| 239 | 237 208 238 | mp2an |  |-  ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) | 
						
							| 240 |  | dvdsrabdioph |  |-  ( ( 6 e. NN0 /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) ) e. ( mzPoly ` ( 1 ... 6 ) ) /\ ( e e. ( ZZ ^m ( 1 ... 6 ) ) |-> ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) e. ( mzPoly ` ( 1 ... 6 ) ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 241 | 90 225 239 240 | mp3an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) | 
						
							| 242 |  | anrabdioph |  |-  ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 243 | 227 241 242 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 244 |  | anrabdioph |  |-  ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 245 | 205 243 244 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 246 |  | anrabdioph |  |-  ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 247 | 194 245 246 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 248 |  | anrabdioph |  |-  ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 249 | 181 247 248 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 250 |  | anrabdioph |  |-  ( ( { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) } e. ( Dioph ` 6 ) /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) | 
						
							| 251 | 113 249 250 | mp2an |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 2 ) e. NN ) /\ ( ( ( e ` 1 ) e. ( ZZ>= ` 2 ) /\ ( e ` 4 ) = ( ( e ` 1 ) rmY ( ( e ` 2 ) + 1 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 5 ) = ( ( e ` 4 ) rmY ( e ` 2 ) ) ) /\ ( ( ( e ` 4 ) e. ( ZZ>= ` 2 ) /\ ( e ` 6 ) = ( ( e ` 4 ) rmX ( e ` 2 ) ) ) /\ ( ( e ` 3 ) < ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( e ` 4 ) ) x. ( e ` 1 ) ) - ( ( e ` 1 ) ^ 2 ) ) - 1 ) || ( ( ( e ` 6 ) - ( ( ( e ` 4 ) - ( e ` 1 ) ) x. ( e ` 5 ) ) ) - ( e ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 252 | 89 251 | eqeltri |  |-  { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) | 
						
							| 253 | 93 94 95 | 3rexfrabdioph |  |-  ( ( 3 e. NN0 /\ { e e. ( NN0 ^m ( 1 ... 6 ) ) | [. ( e |` ( 1 ... 3 ) ) / a ]. [. ( e ` 4 ) / b ]. [. ( e ` 5 ) / c ]. [. ( e ` 6 ) / d ]. ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 6 ) ) -> { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 3 ) ) | 
						
							| 254 | 9 252 253 | mp2an |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | E. b e. NN0 E. c e. NN0 E. d e. NN0 ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ b = ( ( a ` 1 ) rmY ( ( a ` 2 ) + 1 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ c = ( b rmY ( a ` 2 ) ) ) /\ ( ( b e. ( ZZ>= ` 2 ) /\ d = ( b rmX ( a ` 2 ) ) ) /\ ( ( a ` 3 ) < ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. b ) x. ( a ` 1 ) ) - ( ( a ` 1 ) ^ 2 ) ) - 1 ) || ( ( d - ( ( b - ( a ` 1 ) ) x. c ) ) - ( a ` 3 ) ) ) ) ) ) ) } e. ( Dioph ` 3 ) | 
						
							| 255 | 8 254 | eqeltri |  |-  { a e. ( NN0 ^m ( 1 ... 3 ) ) | ( ( ( a ` 1 ) e. ( ZZ>= ` 2 ) /\ ( a ` 2 ) e. NN ) /\ ( a ` 3 ) = ( ( a ` 1 ) ^ ( a ` 2 ) ) ) } e. ( Dioph ` 3 ) |