| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
1
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 e. RR ) |
| 3 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 4 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
| 5 |
3 4
|
syl |
|- ( B e. NN -> ( B + 1 ) e. RR ) |
| 6 |
5
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( B + 1 ) e. RR ) |
| 7 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 8 |
7
|
peano2zd |
|- ( B e. NN -> ( B + 1 ) e. ZZ ) |
| 9 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 10 |
9
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. ZZ ) -> ( A rmY ( B + 1 ) ) e. ZZ ) |
| 11 |
8 10
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. ZZ ) |
| 12 |
11
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. RR ) |
| 13 |
|
elnnuz |
|- ( B e. NN <-> B e. ( ZZ>= ` 1 ) ) |
| 14 |
|
eluzp1p1 |
|- ( B e. ( ZZ>= ` 1 ) -> ( B + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 15 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 16 |
15
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 17 |
14 16
|
eleqtrrdi |
|- ( B e. ( ZZ>= ` 1 ) -> ( B + 1 ) e. ( ZZ>= ` 2 ) ) |
| 18 |
13 17
|
sylbi |
|- ( B e. NN -> ( B + 1 ) e. ( ZZ>= ` 2 ) ) |
| 19 |
|
eluzle |
|- ( ( B + 1 ) e. ( ZZ>= ` 2 ) -> 2 <_ ( B + 1 ) ) |
| 20 |
18 19
|
syl |
|- ( B e. NN -> 2 <_ ( B + 1 ) ) |
| 21 |
20
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 <_ ( B + 1 ) ) |
| 22 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
| 23 |
|
peano2nn0 |
|- ( B e. NN0 -> ( B + 1 ) e. NN0 ) |
| 24 |
22 23
|
syl |
|- ( B e. NN -> ( B + 1 ) e. NN0 ) |
| 25 |
|
rmygeid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. NN0 ) -> ( B + 1 ) <_ ( A rmY ( B + 1 ) ) ) |
| 26 |
24 25
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( B + 1 ) <_ ( A rmY ( B + 1 ) ) ) |
| 27 |
2 6 12 21 26
|
letrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 <_ ( A rmY ( B + 1 ) ) ) |
| 28 |
|
2z |
|- 2 e. ZZ |
| 29 |
|
eluz |
|- ( ( 2 e. ZZ /\ ( A rmY ( B + 1 ) ) e. ZZ ) -> ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( A rmY ( B + 1 ) ) ) ) |
| 30 |
28 11 29
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( A rmY ( B + 1 ) ) ) ) |
| 31 |
27 30
|
mpbird |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) |
| 32 |
31
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) |
| 33 |
|
simprl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> A e. ( ZZ>= ` 2 ) ) |
| 34 |
|
simprr |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. NN ) |
| 35 |
12
|
leidd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) |
| 36 |
35
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) |
| 37 |
|
jm3.1 |
|- ( ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) -> ( A ^ B ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) |
| 38 |
32 33 34 36 37
|
syl31anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A ^ B ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) |
| 39 |
38
|
eqeq2d |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) ) |
| 40 |
7
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> B e. ZZ ) |
| 41 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
| 42 |
41
|
fovcl |
|- ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) |
| 43 |
31 40 42
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) |
| 44 |
43
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. ZZ ) |
| 45 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
| 46 |
45
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> A e. ZZ ) |
| 47 |
11 46
|
zsubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) - A ) e. ZZ ) |
| 48 |
9
|
fovcl |
|- ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. ZZ ) |
| 49 |
31 40 48
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. ZZ ) |
| 50 |
47 49
|
zmulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) e. ZZ ) |
| 51 |
44 50
|
zsubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ ) |
| 52 |
51
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ ) |
| 53 |
32 33 34 36
|
jm3.1lem3 |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) e. NN ) |
| 54 |
|
simpl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> C e. NN0 ) |
| 55 |
|
divalgmodcl |
|- ( ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) e. NN /\ C e. NN0 ) -> ( C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 56 |
52 53 54 55
|
syl3anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 57 |
39 56
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 58 |
|
rmynn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. NN0 ) -> ( A rmY ( B + 1 ) ) e. NN0 ) |
| 59 |
24 58
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. NN0 ) |
| 60 |
59
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) e. NN0 ) |
| 61 |
|
oveq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d rmY B ) = ( ( A rmY ( B + 1 ) ) rmY B ) ) |
| 62 |
61
|
eqeq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( e = ( d rmY B ) <-> e = ( ( A rmY ( B + 1 ) ) rmY B ) ) ) |
| 63 |
|
oveq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d rmX B ) = ( ( A rmY ( B + 1 ) ) rmX B ) ) |
| 64 |
63
|
eqeq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( f = ( d rmX B ) <-> f = ( ( A rmY ( B + 1 ) ) rmX B ) ) ) |
| 65 |
|
oveq2 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( 2 x. d ) = ( 2 x. ( A rmY ( B + 1 ) ) ) ) |
| 66 |
65
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( 2 x. d ) x. A ) = ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) ) |
| 67 |
66
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) = ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) ) |
| 68 |
67
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) = ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) |
| 69 |
68
|
breq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) <-> C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) |
| 70 |
|
oveq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d - A ) = ( ( A rmY ( B + 1 ) ) - A ) ) |
| 71 |
70
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( d - A ) x. e ) = ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) |
| 72 |
71
|
oveq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( f - ( ( d - A ) x. e ) ) = ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) ) |
| 73 |
72
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( f - ( ( d - A ) x. e ) ) - C ) = ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) |
| 74 |
68 73
|
breq12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) |
| 75 |
69 74
|
anbi12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) |
| 76 |
64 75
|
anbi12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) |
| 77 |
76
|
rexbidv |
|- ( d = ( A rmY ( B + 1 ) ) -> ( E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) |
| 78 |
62 77
|
anbi12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
| 79 |
78
|
rexbidv |
|- ( d = ( A rmY ( B + 1 ) ) -> ( E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
| 80 |
79
|
ceqsrexv |
|- ( ( A rmY ( B + 1 ) ) e. NN0 -> ( E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
| 81 |
60 80
|
syl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
| 82 |
22
|
ad2antll |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. NN0 ) |
| 83 |
|
rmynn0 |
|- ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. NN0 ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 ) |
| 84 |
32 82 83
|
syl2anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 ) |
| 85 |
|
oveq2 |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) = ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) |
| 86 |
85
|
oveq2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) = ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) ) |
| 87 |
86
|
oveq1d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) = ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) |
| 88 |
87
|
breq2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) |
| 89 |
88
|
anbi2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 90 |
89
|
anbi2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) <-> ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
| 91 |
90
|
rexbidv |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
| 92 |
91
|
ceqsrexv |
|- ( ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 -> ( E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
| 93 |
84 92
|
syl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
| 94 |
7
|
ad2antll |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. ZZ ) |
| 95 |
32 94 42
|
syl2anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) |
| 96 |
|
oveq1 |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) = ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) ) |
| 97 |
96
|
oveq1d |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) |
| 98 |
97
|
breq2d |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) |
| 99 |
98
|
anbi2d |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 100 |
99
|
ceqsrexv |
|- ( ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 101 |
95 100
|
syl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
| 102 |
81 93 101
|
3bitrrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 103 |
|
r19.42v |
|- ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 104 |
|
r19.42v |
|- ( E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) |
| 105 |
104
|
anbi2i |
|- ( ( d = ( A rmY ( B + 1 ) ) /\ E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 106 |
103 105
|
bitri |
|- ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 107 |
106
|
rexbii |
|- ( E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 108 |
|
r19.42v |
|- ( E. e e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 109 |
107 108
|
bitri |
|- ( E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 110 |
109
|
rexbii |
|- ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 111 |
102 110
|
bitr4di |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 112 |
|
eleq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d e. ( ZZ>= ` 2 ) <-> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) ) |
| 113 |
32 112
|
syl5ibrcom |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( d = ( A rmY ( B + 1 ) ) -> d e. ( ZZ>= ` 2 ) ) ) |
| 114 |
113
|
imp |
|- ( ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) /\ d = ( A rmY ( B + 1 ) ) ) -> d e. ( ZZ>= ` 2 ) ) |
| 115 |
|
ibar |
|- ( d e. ( ZZ>= ` 2 ) -> ( e = ( d rmY B ) <-> ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) ) ) |
| 116 |
|
ibar |
|- ( d e. ( ZZ>= ` 2 ) -> ( f = ( d rmX B ) <-> ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) ) ) |
| 117 |
116
|
anbi1d |
|- ( d e. ( ZZ>= ` 2 ) -> ( ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) |
| 118 |
115 117
|
anbi12d |
|- ( d e. ( ZZ>= ` 2 ) -> ( ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 119 |
114 118
|
syl |
|- ( ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) /\ d = ( A rmY ( B + 1 ) ) ) -> ( ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
| 120 |
119
|
pm5.32da |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 121 |
|
ibar |
|- ( A e. ( ZZ>= ` 2 ) -> ( d = ( A rmY ( B + 1 ) ) <-> ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) ) ) |
| 122 |
121
|
ad2antrl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( d = ( A rmY ( B + 1 ) ) <-> ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) ) ) |
| 123 |
122
|
anbi1d |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 124 |
120 123
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 125 |
124
|
rexbidv |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 126 |
125
|
2rexbidv |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 127 |
111 126
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 128 |
57 127
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 129 |
128
|
pm5.32da |
|- ( C e. NN0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ C = ( A ^ B ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) ) |
| 130 |
|
r19.42v |
|- ( E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 131 |
130
|
2rexbii |
|- ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 132 |
|
r19.42v |
|- ( E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 133 |
132
|
rexbii |
|- ( E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> E. d e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 134 |
|
r19.42v |
|- ( E. d e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 135 |
133 134
|
bitri |
|- ( E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 136 |
131 135
|
bitri |
|- ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
| 137 |
129 136
|
bitr4di |
|- ( C e. NN0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ C = ( A ^ B ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) ) |