| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 e. RR ) | 
						
							| 3 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 4 |  | peano2re |  |-  ( B e. RR -> ( B + 1 ) e. RR ) | 
						
							| 5 | 3 4 | syl |  |-  ( B e. NN -> ( B + 1 ) e. RR ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( B + 1 ) e. RR ) | 
						
							| 7 |  | nnz |  |-  ( B e. NN -> B e. ZZ ) | 
						
							| 8 | 7 | peano2zd |  |-  ( B e. NN -> ( B + 1 ) e. ZZ ) | 
						
							| 9 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 10 | 9 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. ZZ ) -> ( A rmY ( B + 1 ) ) e. ZZ ) | 
						
							| 11 | 8 10 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. ZZ ) | 
						
							| 12 | 11 | zred |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. RR ) | 
						
							| 13 |  | elnnuz |  |-  ( B e. NN <-> B e. ( ZZ>= ` 1 ) ) | 
						
							| 14 |  | eluzp1p1 |  |-  ( B e. ( ZZ>= ` 1 ) -> ( B + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 15 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 16 | 15 | fveq2i |  |-  ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) | 
						
							| 17 | 14 16 | eleqtrrdi |  |-  ( B e. ( ZZ>= ` 1 ) -> ( B + 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 18 | 13 17 | sylbi |  |-  ( B e. NN -> ( B + 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 19 |  | eluzle |  |-  ( ( B + 1 ) e. ( ZZ>= ` 2 ) -> 2 <_ ( B + 1 ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( B e. NN -> 2 <_ ( B + 1 ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 <_ ( B + 1 ) ) | 
						
							| 22 |  | nnnn0 |  |-  ( B e. NN -> B e. NN0 ) | 
						
							| 23 |  | peano2nn0 |  |-  ( B e. NN0 -> ( B + 1 ) e. NN0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( B e. NN -> ( B + 1 ) e. NN0 ) | 
						
							| 25 |  | rmygeid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. NN0 ) -> ( B + 1 ) <_ ( A rmY ( B + 1 ) ) ) | 
						
							| 26 | 24 25 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( B + 1 ) <_ ( A rmY ( B + 1 ) ) ) | 
						
							| 27 | 2 6 12 21 26 | letrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 <_ ( A rmY ( B + 1 ) ) ) | 
						
							| 28 |  | 2z |  |-  2 e. ZZ | 
						
							| 29 |  | eluz |  |-  ( ( 2 e. ZZ /\ ( A rmY ( B + 1 ) ) e. ZZ ) -> ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( A rmY ( B + 1 ) ) ) ) | 
						
							| 30 | 28 11 29 | sylancr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( A rmY ( B + 1 ) ) ) ) | 
						
							| 31 | 27 30 | mpbird |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) | 
						
							| 33 |  | simprl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 34 |  | simprr |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. NN ) | 
						
							| 35 | 12 | leidd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) | 
						
							| 37 |  | jm3.1 |  |-  ( ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) -> ( A ^ B ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) | 
						
							| 38 | 32 33 34 36 37 | syl31anc |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A ^ B ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) ) | 
						
							| 40 | 7 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> B e. ZZ ) | 
						
							| 41 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 42 | 41 | fovcl |  |-  ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) | 
						
							| 43 | 31 40 42 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) | 
						
							| 44 | 43 | nn0zd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. ZZ ) | 
						
							| 45 |  | eluzelz |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) | 
						
							| 46 | 45 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> A e. ZZ ) | 
						
							| 47 | 11 46 | zsubcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) - A ) e. ZZ ) | 
						
							| 48 | 9 | fovcl |  |-  ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. ZZ ) | 
						
							| 49 | 31 40 48 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. ZZ ) | 
						
							| 50 | 47 49 | zmulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) e. ZZ ) | 
						
							| 51 | 44 50 | zsubcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ ) | 
						
							| 52 | 51 | adantl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ ) | 
						
							| 53 | 32 33 34 36 | jm3.1lem3 |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) e. NN ) | 
						
							| 54 |  | simpl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> C e. NN0 ) | 
						
							| 55 |  | divalgmodcl |  |-  ( ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) e. NN /\ C e. NN0 ) -> ( C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 56 | 52 53 54 55 | syl3anc |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 57 | 39 56 | bitrd |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 58 |  | rmynn0 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. NN0 ) -> ( A rmY ( B + 1 ) ) e. NN0 ) | 
						
							| 59 | 24 58 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. NN0 ) | 
						
							| 60 | 59 | adantl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) e. NN0 ) | 
						
							| 61 |  | oveq1 |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( d rmY B ) = ( ( A rmY ( B + 1 ) ) rmY B ) ) | 
						
							| 62 | 61 | eqeq2d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( e = ( d rmY B ) <-> e = ( ( A rmY ( B + 1 ) ) rmY B ) ) ) | 
						
							| 63 |  | oveq1 |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( d rmX B ) = ( ( A rmY ( B + 1 ) ) rmX B ) ) | 
						
							| 64 | 63 | eqeq2d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( f = ( d rmX B ) <-> f = ( ( A rmY ( B + 1 ) ) rmX B ) ) ) | 
						
							| 65 |  | oveq2 |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( 2 x. d ) = ( 2 x. ( A rmY ( B + 1 ) ) ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( 2 x. d ) x. A ) = ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) ) | 
						
							| 67 | 66 | oveq1d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) = ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) ) | 
						
							| 68 | 67 | oveq1d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) = ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) | 
						
							| 69 | 68 | breq2d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) <-> C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) | 
						
							| 70 |  | oveq1 |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( d - A ) = ( ( A rmY ( B + 1 ) ) - A ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( d - A ) x. e ) = ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( f - ( ( d - A ) x. e ) ) = ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( f - ( ( d - A ) x. e ) ) - C ) = ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) | 
						
							| 74 | 68 73 | breq12d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) | 
						
							| 75 | 69 74 | anbi12d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) | 
						
							| 76 | 64 75 | anbi12d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) | 
						
							| 77 | 76 | rexbidv |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) | 
						
							| 78 | 62 77 | anbi12d |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 79 | 78 | rexbidv |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 80 | 79 | ceqsrexv |  |-  ( ( A rmY ( B + 1 ) ) e. NN0 -> ( E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 81 | 60 80 | syl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 82 | 22 | ad2antll |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. NN0 ) | 
						
							| 83 |  | rmynn0 |  |-  ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. NN0 ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 ) | 
						
							| 84 | 32 82 83 | syl2anc |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 ) | 
						
							| 85 |  | oveq2 |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) = ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) = ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) = ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) | 
						
							| 88 | 87 | breq2d |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) | 
						
							| 89 | 88 | anbi2d |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 90 | 89 | anbi2d |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) <-> ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) | 
						
							| 91 | 90 | rexbidv |  |-  ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) | 
						
							| 92 | 91 | ceqsrexv |  |-  ( ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 -> ( E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) | 
						
							| 93 | 84 92 | syl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) | 
						
							| 94 | 7 | ad2antll |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. ZZ ) | 
						
							| 95 | 32 94 42 | syl2anc |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) | 
						
							| 96 |  | oveq1 |  |-  ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) = ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) | 
						
							| 98 | 97 | breq2d |  |-  ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) | 
						
							| 99 | 98 | anbi2d |  |-  ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 100 | 99 | ceqsrexv |  |-  ( ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 101 | 95 100 | syl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) | 
						
							| 102 | 81 93 101 | 3bitrrd |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 103 |  | r19.42v |  |-  ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 104 |  | r19.42v |  |-  ( E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) | 
						
							| 105 | 104 | anbi2i |  |-  ( ( d = ( A rmY ( B + 1 ) ) /\ E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 106 | 103 105 | bitri |  |-  ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 107 | 106 | rexbii |  |-  ( E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 108 |  | r19.42v |  |-  ( E. e e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 109 | 107 108 | bitri |  |-  ( E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 110 | 109 | rexbii |  |-  ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 111 | 102 110 | bitr4di |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 112 |  | eleq1 |  |-  ( d = ( A rmY ( B + 1 ) ) -> ( d e. ( ZZ>= ` 2 ) <-> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 113 | 32 112 | syl5ibrcom |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( d = ( A rmY ( B + 1 ) ) -> d e. ( ZZ>= ` 2 ) ) ) | 
						
							| 114 | 113 | imp |  |-  ( ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) /\ d = ( A rmY ( B + 1 ) ) ) -> d e. ( ZZ>= ` 2 ) ) | 
						
							| 115 |  | ibar |  |-  ( d e. ( ZZ>= ` 2 ) -> ( e = ( d rmY B ) <-> ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) ) ) | 
						
							| 116 |  | ibar |  |-  ( d e. ( ZZ>= ` 2 ) -> ( f = ( d rmX B ) <-> ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) ) ) | 
						
							| 117 | 116 | anbi1d |  |-  ( d e. ( ZZ>= ` 2 ) -> ( ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) | 
						
							| 118 | 115 117 | anbi12d |  |-  ( d e. ( ZZ>= ` 2 ) -> ( ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 119 | 114 118 | syl |  |-  ( ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) /\ d = ( A rmY ( B + 1 ) ) ) -> ( ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) | 
						
							| 120 | 119 | pm5.32da |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 121 |  | ibar |  |-  ( A e. ( ZZ>= ` 2 ) -> ( d = ( A rmY ( B + 1 ) ) <-> ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) ) ) | 
						
							| 122 | 121 | ad2antrl |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( d = ( A rmY ( B + 1 ) ) <-> ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) ) ) | 
						
							| 123 | 122 | anbi1d |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 124 | 120 123 | bitrd |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 125 | 124 | rexbidv |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 126 | 125 | 2rexbidv |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 127 | 111 126 | bitrd |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 128 | 57 127 | bitrd |  |-  ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 129 | 128 | pm5.32da |  |-  ( C e. NN0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ C = ( A ^ B ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) ) | 
						
							| 130 |  | r19.42v |  |-  ( E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 131 | 130 | 2rexbii |  |-  ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 132 |  | r19.42v |  |-  ( E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 133 | 132 | rexbii |  |-  ( E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> E. d e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 134 |  | r19.42v |  |-  ( E. d e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 135 | 133 134 | bitri |  |-  ( E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 136 | 131 135 | bitri |  |-  ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) | 
						
							| 137 | 129 136 | bitr4di |  |-  ( C e. NN0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ C = ( A ^ B ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) ) |