Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
1
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 e. RR ) |
3 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
4 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
5 |
3 4
|
syl |
|- ( B e. NN -> ( B + 1 ) e. RR ) |
6 |
5
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( B + 1 ) e. RR ) |
7 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
8 |
7
|
peano2zd |
|- ( B e. NN -> ( B + 1 ) e. ZZ ) |
9 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
10 |
9
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. ZZ ) -> ( A rmY ( B + 1 ) ) e. ZZ ) |
11 |
8 10
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. ZZ ) |
12 |
11
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. RR ) |
13 |
|
elnnuz |
|- ( B e. NN <-> B e. ( ZZ>= ` 1 ) ) |
14 |
|
eluzp1p1 |
|- ( B e. ( ZZ>= ` 1 ) -> ( B + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
15 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
16 |
15
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
17 |
14 16
|
eleqtrrdi |
|- ( B e. ( ZZ>= ` 1 ) -> ( B + 1 ) e. ( ZZ>= ` 2 ) ) |
18 |
13 17
|
sylbi |
|- ( B e. NN -> ( B + 1 ) e. ( ZZ>= ` 2 ) ) |
19 |
|
eluzle |
|- ( ( B + 1 ) e. ( ZZ>= ` 2 ) -> 2 <_ ( B + 1 ) ) |
20 |
18 19
|
syl |
|- ( B e. NN -> 2 <_ ( B + 1 ) ) |
21 |
20
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 <_ ( B + 1 ) ) |
22 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
23 |
|
peano2nn0 |
|- ( B e. NN0 -> ( B + 1 ) e. NN0 ) |
24 |
22 23
|
syl |
|- ( B e. NN -> ( B + 1 ) e. NN0 ) |
25 |
|
rmygeid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. NN0 ) -> ( B + 1 ) <_ ( A rmY ( B + 1 ) ) ) |
26 |
24 25
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( B + 1 ) <_ ( A rmY ( B + 1 ) ) ) |
27 |
2 6 12 21 26
|
letrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> 2 <_ ( A rmY ( B + 1 ) ) ) |
28 |
|
2z |
|- 2 e. ZZ |
29 |
|
eluz |
|- ( ( 2 e. ZZ /\ ( A rmY ( B + 1 ) ) e. ZZ ) -> ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( A rmY ( B + 1 ) ) ) ) |
30 |
28 11 29
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( A rmY ( B + 1 ) ) ) ) |
31 |
27 30
|
mpbird |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) |
32 |
31
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) |
33 |
|
simprl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> A e. ( ZZ>= ` 2 ) ) |
34 |
|
simprr |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. NN ) |
35 |
12
|
leidd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) |
36 |
35
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) |
37 |
|
jm3.1 |
|- ( ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( A rmY ( B + 1 ) ) <_ ( A rmY ( B + 1 ) ) ) -> ( A ^ B ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) |
38 |
32 33 34 36 37
|
syl31anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A ^ B ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) |
39 |
38
|
eqeq2d |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) ) |
40 |
7
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> B e. ZZ ) |
41 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
42 |
41
|
fovcl |
|- ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) |
43 |
31 40 42
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) |
44 |
43
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. ZZ ) |
45 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
46 |
45
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> A e. ZZ ) |
47 |
11 46
|
zsubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) - A ) e. ZZ ) |
48 |
9
|
fovcl |
|- ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. ZZ ) |
49 |
31 40 48
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. ZZ ) |
50 |
47 49
|
zmulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) e. ZZ ) |
51 |
44 50
|
zsubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ ) |
52 |
51
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ ) |
53 |
32 33 34 36
|
jm3.1lem3 |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) e. NN ) |
54 |
|
simpl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> C e. NN0 ) |
55 |
|
divalgmodcl |
|- ( ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) e. ZZ /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) e. NN /\ C e. NN0 ) -> ( C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
56 |
52 53 54 55
|
syl3anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) mod ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
57 |
39 56
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
58 |
|
rmynn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( B + 1 ) e. NN0 ) -> ( A rmY ( B + 1 ) ) e. NN0 ) |
59 |
24 58
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) -> ( A rmY ( B + 1 ) ) e. NN0 ) |
60 |
59
|
adantl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( A rmY ( B + 1 ) ) e. NN0 ) |
61 |
|
oveq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d rmY B ) = ( ( A rmY ( B + 1 ) ) rmY B ) ) |
62 |
61
|
eqeq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( e = ( d rmY B ) <-> e = ( ( A rmY ( B + 1 ) ) rmY B ) ) ) |
63 |
|
oveq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d rmX B ) = ( ( A rmY ( B + 1 ) ) rmX B ) ) |
64 |
63
|
eqeq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( f = ( d rmX B ) <-> f = ( ( A rmY ( B + 1 ) ) rmX B ) ) ) |
65 |
|
oveq2 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( 2 x. d ) = ( 2 x. ( A rmY ( B + 1 ) ) ) ) |
66 |
65
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( 2 x. d ) x. A ) = ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) ) |
67 |
66
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) = ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) ) |
68 |
67
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) = ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) |
69 |
68
|
breq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) <-> C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) ) ) |
70 |
|
oveq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d - A ) = ( ( A rmY ( B + 1 ) ) - A ) ) |
71 |
70
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( d - A ) x. e ) = ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) |
72 |
71
|
oveq2d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( f - ( ( d - A ) x. e ) ) = ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) ) |
73 |
72
|
oveq1d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( f - ( ( d - A ) x. e ) ) - C ) = ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) |
74 |
68 73
|
breq12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) |
75 |
69 74
|
anbi12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) |
76 |
64 75
|
anbi12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) |
77 |
76
|
rexbidv |
|- ( d = ( A rmY ( B + 1 ) ) -> ( E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) |
78 |
62 77
|
anbi12d |
|- ( d = ( A rmY ( B + 1 ) ) -> ( ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
79 |
78
|
rexbidv |
|- ( d = ( A rmY ( B + 1 ) ) -> ( E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
80 |
79
|
ceqsrexv |
|- ( ( A rmY ( B + 1 ) ) e. NN0 -> ( E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
81 |
60 80
|
syl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) ) ) |
82 |
22
|
ad2antll |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. NN0 ) |
83 |
|
rmynn0 |
|- ( ( ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) /\ B e. NN0 ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 ) |
84 |
32 82 83
|
syl2anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 ) |
85 |
|
oveq2 |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) = ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) |
86 |
85
|
oveq2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) = ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) ) |
87 |
86
|
oveq1d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) = ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) |
88 |
87
|
breq2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) |
89 |
88
|
anbi2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
90 |
89
|
anbi2d |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) <-> ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
91 |
90
|
rexbidv |
|- ( e = ( ( A rmY ( B + 1 ) ) rmY B ) -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
92 |
91
|
ceqsrexv |
|- ( ( ( A rmY ( B + 1 ) ) rmY B ) e. NN0 -> ( E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
93 |
84 92
|
syl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. e e. NN0 ( e = ( ( A rmY ( B + 1 ) ) rmY B ) /\ E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. e ) ) - C ) ) ) ) <-> E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) ) |
94 |
7
|
ad2antll |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> B e. ZZ ) |
95 |
32 94 42
|
syl2anc |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 ) |
96 |
|
oveq1 |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) = ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) ) |
97 |
96
|
oveq1d |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) = ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) |
98 |
97
|
breq2d |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) <-> ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) |
99 |
98
|
anbi2d |
|- ( f = ( ( A rmY ( B + 1 ) ) rmX B ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
100 |
99
|
ceqsrexv |
|- ( ( ( A rmY ( B + 1 ) ) rmX B ) e. NN0 -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
101 |
95 100
|
syl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. f e. NN0 ( f = ( ( A rmY ( B + 1 ) ) rmX B ) /\ ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) <-> ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) ) ) |
102 |
81 93 101
|
3bitrrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
103 |
|
r19.42v |
|- ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
104 |
|
r19.42v |
|- ( E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) |
105 |
104
|
anbi2i |
|- ( ( d = ( A rmY ( B + 1 ) ) /\ E. f e. NN0 ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
106 |
103 105
|
bitri |
|- ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
107 |
106
|
rexbii |
|- ( E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. e e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
108 |
|
r19.42v |
|- ( E. e e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
109 |
107 108
|
bitri |
|- ( E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
110 |
109
|
rexbii |
|- ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. d e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ E. e e. NN0 ( e = ( d rmY B ) /\ E. f e. NN0 ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
111 |
102 110
|
bitr4di |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
112 |
|
eleq1 |
|- ( d = ( A rmY ( B + 1 ) ) -> ( d e. ( ZZ>= ` 2 ) <-> ( A rmY ( B + 1 ) ) e. ( ZZ>= ` 2 ) ) ) |
113 |
32 112
|
syl5ibrcom |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( d = ( A rmY ( B + 1 ) ) -> d e. ( ZZ>= ` 2 ) ) ) |
114 |
113
|
imp |
|- ( ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) /\ d = ( A rmY ( B + 1 ) ) ) -> d e. ( ZZ>= ` 2 ) ) |
115 |
|
ibar |
|- ( d e. ( ZZ>= ` 2 ) -> ( e = ( d rmY B ) <-> ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) ) ) |
116 |
|
ibar |
|- ( d e. ( ZZ>= ` 2 ) -> ( f = ( d rmX B ) <-> ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) ) ) |
117 |
116
|
anbi1d |
|- ( d e. ( ZZ>= ` 2 ) -> ( ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) |
118 |
115 117
|
anbi12d |
|- ( d e. ( ZZ>= ` 2 ) -> ( ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
119 |
114 118
|
syl |
|- ( ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) /\ d = ( A rmY ( B + 1 ) ) ) -> ( ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) <-> ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) |
120 |
119
|
pm5.32da |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( d = ( A rmY ( B + 1 ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
121 |
|
ibar |
|- ( A e. ( ZZ>= ` 2 ) -> ( d = ( A rmY ( B + 1 ) ) <-> ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) ) ) |
122 |
121
|
ad2antrl |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( d = ( A rmY ( B + 1 ) ) <-> ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) ) ) |
123 |
122
|
anbi1d |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
124 |
120 123
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
125 |
124
|
rexbidv |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
126 |
125
|
2rexbidv |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( d = ( A rmY ( B + 1 ) ) /\ ( e = ( d rmY B ) /\ ( f = ( d rmX B ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
127 |
111 126
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( ( C < ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. ( A rmY ( B + 1 ) ) ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( ( ( A rmY ( B + 1 ) ) rmX B ) - ( ( ( A rmY ( B + 1 ) ) - A ) x. ( ( A rmY ( B + 1 ) ) rmY B ) ) ) - C ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
128 |
57 127
|
bitrd |
|- ( ( C e. NN0 /\ ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) ) -> ( C = ( A ^ B ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
129 |
128
|
pm5.32da |
|- ( C e. NN0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ C = ( A ^ B ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) ) |
130 |
|
r19.42v |
|- ( E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
131 |
130
|
2rexbii |
|- ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
132 |
|
r19.42v |
|- ( E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
133 |
132
|
rexbii |
|- ( E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> E. d e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
134 |
|
r19.42v |
|- ( E. d e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
135 |
133 134
|
bitri |
|- ( E. d e. NN0 E. e e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
136 |
131 135
|
bitri |
|- ( E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) |
137 |
129 136
|
bitr4di |
|- ( C e. NN0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ C = ( A ^ B ) ) <-> E. d e. NN0 E. e e. NN0 E. f e. NN0 ( ( A e. ( ZZ>= ` 2 ) /\ B e. NN ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ d = ( A rmY ( B + 1 ) ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ e = ( d rmY B ) ) /\ ( ( d e. ( ZZ>= ` 2 ) /\ f = ( d rmX B ) ) /\ ( C < ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) /\ ( ( ( ( 2 x. d ) x. A ) - ( A ^ 2 ) ) - 1 ) || ( ( f - ( ( d - A ) x. e ) ) - C ) ) ) ) ) ) ) ) |