Metamath Proof Explorer


Theorem expdioph

Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion expdioph a 0 1 3 | a 3 = a 1 a 2 Dioph 3

Proof

Step Hyp Ref Expression
1 pm4.42 a 3 = a 1 a 2 a 3 = a 1 a 2 a 2 a 3 = a 1 a 2 ¬ a 2
2 ancom a 3 = a 1 a 2 a 2 a 2 a 3 = a 1 a 2
3 elmapi a 0 1 3 a : 1 3 0
4 df-2 2 = 1 + 1
5 df-3 3 = 2 + 1
6 ssid 1 3 1 3
7 5 6 jm2.27dlem5 1 2 1 3
8 4 7 jm2.27dlem5 1 1 1 3
9 1nn 1
10 9 jm2.27dlem3 1 1 1
11 8 10 sselii 1 1 3
12 ffvelrn a : 1 3 0 1 1 3 a 1 0
13 3 11 12 sylancl a 0 1 3 a 1 0
14 13 adantr a 0 1 3 a 2 a 1 0
15 elnn0 a 1 0 a 1 a 1 = 0
16 14 15 sylib a 0 1 3 a 2 a 1 a 1 = 0
17 elnn1uz2 a 1 a 1 = 1 a 1 2
18 17 biimpi a 1 a 1 = 1 a 1 2
19 18 orim1i a 1 a 1 = 0 a 1 = 1 a 1 2 a 1 = 0
20 16 19 syl a 0 1 3 a 2 a 1 = 1 a 1 2 a 1 = 0
21 20 biantrurd a 0 1 3 a 2 a 3 = a 1 a 2 a 1 = 1 a 1 2 a 1 = 0 a 3 = a 1 a 2
22 andir a 1 = 1 a 1 2 a 1 = 0 a 3 = a 1 a 2 a 1 = 1 a 1 2 a 3 = a 1 a 2 a 1 = 0 a 3 = a 1 a 2
23 andir a 1 = 1 a 1 2 a 3 = a 1 a 2 a 1 = 1 a 3 = a 1 a 2 a 1 2 a 3 = a 1 a 2
24 23 orbi1i a 1 = 1 a 1 2 a 3 = a 1 a 2 a 1 = 0 a 3 = a 1 a 2 a 1 = 1 a 3 = a 1 a 2 a 1 2 a 3 = a 1 a 2 a 1 = 0 a 3 = a 1 a 2
25 22 24 bitri a 1 = 1 a 1 2 a 1 = 0 a 3 = a 1 a 2 a 1 = 1 a 3 = a 1 a 2 a 1 2 a 3 = a 1 a 2 a 1 = 0 a 3 = a 1 a 2
26 nnz a 2 a 2
27 1exp a 2 1 a 2 = 1
28 26 27 syl a 2 1 a 2 = 1
29 28 adantl a 0 1 3 a 2 1 a 2 = 1
30 29 eqeq2d a 0 1 3 a 2 a 3 = 1 a 2 a 3 = 1
31 oveq1 a 1 = 1 a 1 a 2 = 1 a 2
32 31 eqeq2d a 1 = 1 a 3 = a 1 a 2 a 3 = 1 a 2
33 32 bibi1d a 1 = 1 a 3 = a 1 a 2 a 3 = 1 a 3 = 1 a 2 a 3 = 1
34 30 33 syl5ibrcom a 0 1 3 a 2 a 1 = 1 a 3 = a 1 a 2 a 3 = 1
35 34 pm5.32d a 0 1 3 a 2 a 1 = 1 a 3 = a 1 a 2 a 1 = 1 a 3 = 1
36 iba a 2 a 1 2 a 1 2 a 2
37 36 adantl a 0 1 3 a 2 a 1 2 a 1 2 a 2
38 37 anbi1d a 0 1 3 a 2 a 1 2 a 3 = a 1 a 2 a 1 2 a 2 a 3 = a 1 a 2
39 35 38 orbi12d a 0 1 3 a 2 a 1 = 1 a 3 = a 1 a 2 a 1 2 a 3 = a 1 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2
40 0exp a 2 0 a 2 = 0
41 40 adantl a 0 1 3 a 2 0 a 2 = 0
42 41 eqeq2d a 0 1 3 a 2 a 3 = 0 a 2 a 3 = 0
43 oveq1 a 1 = 0 a 1 a 2 = 0 a 2
44 43 eqeq2d a 1 = 0 a 3 = a 1 a 2 a 3 = 0 a 2
45 44 bibi1d a 1 = 0 a 3 = a 1 a 2 a 3 = 0 a 3 = 0 a 2 a 3 = 0
46 42 45 syl5ibrcom a 0 1 3 a 2 a 1 = 0 a 3 = a 1 a 2 a 3 = 0
47 46 pm5.32d a 0 1 3 a 2 a 1 = 0 a 3 = a 1 a 2 a 1 = 0 a 3 = 0
48 39 47 orbi12d a 0 1 3 a 2 a 1 = 1 a 3 = a 1 a 2 a 1 2 a 3 = a 1 a 2 a 1 = 0 a 3 = a 1 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0
49 25 48 syl5bb a 0 1 3 a 2 a 1 = 1 a 1 2 a 1 = 0 a 3 = a 1 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0
50 21 49 bitrd a 0 1 3 a 2 a 3 = a 1 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0
51 50 pm5.32da a 0 1 3 a 2 a 3 = a 1 a 2 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0
52 2 51 syl5bb a 0 1 3 a 3 = a 1 a 2 a 2 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0
53 ancom a 3 = a 1 a 2 ¬ a 2 ¬ a 2 a 3 = a 1 a 2
54 2nn 2
55 54 jm2.27dlem3 2 1 2
56 7 55 sselii 2 1 3
57 ffvelrn a : 1 3 0 2 1 3 a 2 0
58 3 56 57 sylancl a 0 1 3 a 2 0
59 elnn0 a 2 0 a 2 a 2 = 0
60 pm2.53 a 2 a 2 = 0 ¬ a 2 a 2 = 0
61 59 60 sylbi a 2 0 ¬ a 2 a 2 = 0
62 0nnn ¬ 0
63 eleq1 a 2 = 0 a 2 0
64 62 63 mtbiri a 2 = 0 ¬ a 2
65 61 64 impbid1 a 2 0 ¬ a 2 a 2 = 0
66 58 65 syl a 0 1 3 ¬ a 2 a 2 = 0
67 66 anbi1d a 0 1 3 ¬ a 2 a 3 = a 1 a 2 a 2 = 0 a 3 = a 1 a 2
68 13 nn0cnd a 0 1 3 a 1
69 68 exp0d a 0 1 3 a 1 0 = 1
70 69 eqeq2d a 0 1 3 a 3 = a 1 0 a 3 = 1
71 oveq2 a 2 = 0 a 1 a 2 = a 1 0
72 71 eqeq2d a 2 = 0 a 3 = a 1 a 2 a 3 = a 1 0
73 72 bibi1d a 2 = 0 a 3 = a 1 a 2 a 3 = 1 a 3 = a 1 0 a 3 = 1
74 70 73 syl5ibrcom a 0 1 3 a 2 = 0 a 3 = a 1 a 2 a 3 = 1
75 74 pm5.32d a 0 1 3 a 2 = 0 a 3 = a 1 a 2 a 2 = 0 a 3 = 1
76 67 75 bitrd a 0 1 3 ¬ a 2 a 3 = a 1 a 2 a 2 = 0 a 3 = 1
77 53 76 syl5bb a 0 1 3 a 3 = a 1 a 2 ¬ a 2 a 2 = 0 a 3 = 1
78 52 77 orbi12d a 0 1 3 a 3 = a 1 a 2 a 2 a 3 = a 1 a 2 ¬ a 2 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 a 2 = 0 a 3 = 1
79 1 78 syl5bb a 0 1 3 a 3 = a 1 a 2 a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 a 2 = 0 a 3 = 1
80 79 rabbiia a 0 1 3 | a 3 = a 1 a 2 = a 0 1 3 | a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 a 2 = 0 a 3 = 1
81 3nn0 3 0
82 ovex 1 3 V
83 mzpproj 1 3 V 2 1 3 a 1 3 a 2 mzPoly 1 3
84 82 56 83 mp2an a 1 3 a 2 mzPoly 1 3
85 elnnrabdioph 3 0 a 1 3 a 2 mzPoly 1 3 a 0 1 3 | a 2 Dioph 3
86 81 84 85 mp2an a 0 1 3 | a 2 Dioph 3
87 mzpproj 1 3 V 1 1 3 a 1 3 a 1 mzPoly 1 3
88 82 11 87 mp2an a 1 3 a 1 mzPoly 1 3
89 1z 1
90 mzpconstmpt 1 3 V 1 a 1 3 1 mzPoly 1 3
91 82 89 90 mp2an a 1 3 1 mzPoly 1 3
92 eqrabdioph 3 0 a 1 3 a 1 mzPoly 1 3 a 1 3 1 mzPoly 1 3 a 0 1 3 | a 1 = 1 Dioph 3
93 81 88 91 92 mp3an a 0 1 3 | a 1 = 1 Dioph 3
94 3nn 3
95 94 jm2.27dlem3 3 1 3
96 mzpproj 1 3 V 3 1 3 a 1 3 a 3 mzPoly 1 3
97 82 95 96 mp2an a 1 3 a 3 mzPoly 1 3
98 eqrabdioph 3 0 a 1 3 a 3 mzPoly 1 3 a 1 3 1 mzPoly 1 3 a 0 1 3 | a 3 = 1 Dioph 3
99 81 97 91 98 mp3an a 0 1 3 | a 3 = 1 Dioph 3
100 anrabdioph a 0 1 3 | a 1 = 1 Dioph 3 a 0 1 3 | a 3 = 1 Dioph 3 a 0 1 3 | a 1 = 1 a 3 = 1 Dioph 3
101 93 99 100 mp2an a 0 1 3 | a 1 = 1 a 3 = 1 Dioph 3
102 expdiophlem2 a 0 1 3 | a 1 2 a 2 a 3 = a 1 a 2 Dioph 3
103 orrabdioph a 0 1 3 | a 1 = 1 a 3 = 1 Dioph 3 a 0 1 3 | a 1 2 a 2 a 3 = a 1 a 2 Dioph 3 a 0 1 3 | a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 Dioph 3
104 101 102 103 mp2an a 0 1 3 | a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 Dioph 3
105 eq0rabdioph 3 0 a 1 3 a 1 mzPoly 1 3 a 0 1 3 | a 1 = 0 Dioph 3
106 81 88 105 mp2an a 0 1 3 | a 1 = 0 Dioph 3
107 eq0rabdioph 3 0 a 1 3 a 3 mzPoly 1 3 a 0 1 3 | a 3 = 0 Dioph 3
108 81 97 107 mp2an a 0 1 3 | a 3 = 0 Dioph 3
109 anrabdioph a 0 1 3 | a 1 = 0 Dioph 3 a 0 1 3 | a 3 = 0 Dioph 3 a 0 1 3 | a 1 = 0 a 3 = 0 Dioph 3
110 106 108 109 mp2an a 0 1 3 | a 1 = 0 a 3 = 0 Dioph 3
111 orrabdioph a 0 1 3 | a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 Dioph 3 a 0 1 3 | a 1 = 0 a 3 = 0 Dioph 3 a 0 1 3 | a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 Dioph 3
112 104 110 111 mp2an a 0 1 3 | a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 Dioph 3
113 anrabdioph a 0 1 3 | a 2 Dioph 3 a 0 1 3 | a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 Dioph 3 a 0 1 3 | a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 Dioph 3
114 86 112 113 mp2an a 0 1 3 | a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 Dioph 3
115 eq0rabdioph 3 0 a 1 3 a 2 mzPoly 1 3 a 0 1 3 | a 2 = 0 Dioph 3
116 81 84 115 mp2an a 0 1 3 | a 2 = 0 Dioph 3
117 anrabdioph a 0 1 3 | a 2 = 0 Dioph 3 a 0 1 3 | a 3 = 1 Dioph 3 a 0 1 3 | a 2 = 0 a 3 = 1 Dioph 3
118 116 99 117 mp2an a 0 1 3 | a 2 = 0 a 3 = 1 Dioph 3
119 orrabdioph a 0 1 3 | a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 Dioph 3 a 0 1 3 | a 2 = 0 a 3 = 1 Dioph 3 a 0 1 3 | a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 a 2 = 0 a 3 = 1 Dioph 3
120 114 118 119 mp2an a 0 1 3 | a 2 a 1 = 1 a 3 = 1 a 1 2 a 2 a 3 = a 1 a 2 a 1 = 0 a 3 = 0 a 2 = 0 a 3 = 1 Dioph 3
121 80 120 eqeltri a 0 1 3 | a 3 = a 1 a 2 Dioph 3