| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 2 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 3 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 4 |
3
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 5 |
4
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 6 |
|
1cnd |
|- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
| 7 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
| 8 |
7
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) |
| 9 |
|
divdir |
|- ( ( ( log ` x ) e. CC /\ 1 e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( log ` x ) + 1 ) / x ) = ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) |
| 10 |
5 6 8 9
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) + 1 ) / x ) = ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) |
| 11 |
10
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) + 1 ) / x ) ) = ( x e. RR+ |-> ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) ) |
| 12 |
|
simpr |
|- ( ( T. /\ x e. RR+ ) -> x e. RR+ ) |
| 13 |
4 12
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) / x ) e. RR ) |
| 14 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
| 15 |
14
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 16 |
15
|
rpred |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR ) |
| 17 |
8
|
simpld |
|- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
| 18 |
17
|
cxp1d |
|- ( ( T. /\ x e. RR+ ) -> ( x ^c 1 ) = x ) |
| 19 |
18
|
oveq2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) / ( x ^c 1 ) ) = ( ( log ` x ) / x ) ) |
| 20 |
19
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c 1 ) ) ) = ( x e. RR+ |-> ( ( log ` x ) / x ) ) ) |
| 21 |
|
1rp |
|- 1 e. RR+ |
| 22 |
|
cxploglim |
|- ( 1 e. RR+ -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c 1 ) ) ) ~~>r 0 ) |
| 23 |
21 22
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c 1 ) ) ) ~~>r 0 ) |
| 24 |
20 23
|
eqbrtrrd |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / x ) ) ~~>r 0 ) |
| 25 |
|
ax-1cn |
|- 1 e. CC |
| 26 |
|
divrcnv |
|- ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) |
| 27 |
25 26
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) |
| 28 |
13 16 24 27
|
rlimadd |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) ~~>r ( 0 + 0 ) ) |
| 29 |
11 28
|
eqbrtrd |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) + 1 ) / x ) ) ~~>r ( 0 + 0 ) ) |
| 30 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 31 |
29 30
|
breqtrdi |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) + 1 ) / x ) ) ~~>r 0 ) |
| 32 |
|
peano2re |
|- ( ( log ` x ) e. RR -> ( ( log ` x ) + 1 ) e. RR ) |
| 33 |
4 32
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) + 1 ) e. RR ) |
| 34 |
33 12
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) + 1 ) / x ) e. RR ) |
| 35 |
34
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) + 1 ) / x ) e. CC ) |
| 36 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
| 37 |
36
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
| 38 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
| 39 |
|
faccl |
|- ( ( |_ ` x ) e. NN0 -> ( ! ` ( |_ ` x ) ) e. NN ) |
| 40 |
37 38 39
|
3syl |
|- ( ( T. /\ x e. RR+ ) -> ( ! ` ( |_ ` x ) ) e. NN ) |
| 41 |
40
|
nnrpd |
|- ( ( T. /\ x e. RR+ ) -> ( ! ` ( |_ ` x ) ) e. RR+ ) |
| 42 |
|
relogcl |
|- ( ( ! ` ( |_ ` x ) ) e. RR+ -> ( log ` ( ! ` ( |_ ` x ) ) ) e. RR ) |
| 43 |
41 42
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` ( ! ` ( |_ ` x ) ) ) e. RR ) |
| 44 |
43 12
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. CC ) |
| 46 |
5 45
|
subcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) e. CC ) |
| 47 |
|
logfacbnd3 |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) ) |
| 48 |
47
|
adantl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) ) |
| 49 |
43
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` ( ! ` ( |_ ` x ) ) ) e. CC ) |
| 50 |
49
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` ( ! ` ( |_ ` x ) ) ) e. CC ) |
| 51 |
7
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 52 |
51
|
simpld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. CC ) |
| 53 |
5
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. CC ) |
| 54 |
|
subcl |
|- ( ( ( log ` x ) e. CC /\ 1 e. CC ) -> ( ( log ` x ) - 1 ) e. CC ) |
| 55 |
53 25 54
|
sylancl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) - 1 ) e. CC ) |
| 56 |
52 55
|
mulcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x x. ( ( log ` x ) - 1 ) ) e. CC ) |
| 57 |
50 56
|
subcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) e. CC ) |
| 58 |
57
|
abscld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) e. RR ) |
| 59 |
4
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. RR ) |
| 60 |
59 32
|
syl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + 1 ) e. RR ) |
| 61 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
| 62 |
61
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 < x ) ) |
| 63 |
|
lediv1 |
|- ( ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) e. RR /\ ( ( log ` x ) + 1 ) e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) <-> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) / x ) ) ) |
| 64 |
58 60 62 63
|
syl3anc |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) <-> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) / x ) ) ) |
| 65 |
48 64
|
mpbid |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) / x ) ) |
| 66 |
51
|
simprd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x =/= 0 ) |
| 67 |
55 52 66
|
divcan3d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( x x. ( ( log ` x ) - 1 ) ) / x ) = ( ( log ` x ) - 1 ) ) |
| 68 |
67
|
oveq1d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( x x. ( ( log ` x ) - 1 ) ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) = ( ( ( log ` x ) - 1 ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
| 69 |
|
divsubdir |
|- ( ( ( x x. ( ( log ` x ) - 1 ) ) e. CC /\ ( log ` ( ! ` ( |_ ` x ) ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) = ( ( ( x x. ( ( log ` x ) - 1 ) ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
| 70 |
56 50 51 69
|
syl3anc |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) = ( ( ( x x. ( ( log ` x ) - 1 ) ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
| 71 |
45
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. CC ) |
| 72 |
|
1cnd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 e. CC ) |
| 73 |
53 71 72
|
sub32d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) = ( ( ( log ` x ) - 1 ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
| 74 |
68 70 73
|
3eqtr4rd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) = ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) |
| 75 |
74
|
fveq2d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) ) = ( abs ` ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) ) |
| 76 |
56 50
|
subcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) e. CC ) |
| 77 |
76 52 66
|
absdivd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) = ( ( abs ` ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) / ( abs ` x ) ) ) |
| 78 |
56 50
|
abssubd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) = ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ) |
| 79 |
36
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 <_ x ) ) |
| 80 |
|
absid |
|- ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) |
| 81 |
79 80
|
syl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` x ) = x ) |
| 82 |
78 81
|
oveq12d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( abs ` ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) / ( abs ` x ) ) = ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) ) |
| 83 |
75 77 82
|
3eqtrd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) ) = ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) ) |
| 84 |
35
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) + 1 ) / x ) e. CC ) |
| 85 |
84
|
subid1d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) = ( ( ( log ` x ) + 1 ) / x ) ) |
| 86 |
85
|
fveq2d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) ) = ( abs ` ( ( ( log ` x ) + 1 ) / x ) ) ) |
| 87 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 88 |
|
simprr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
| 89 |
12
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
| 90 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
| 91 |
21 89 90
|
sylancr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
| 92 |
88 91
|
mpbid |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
| 93 |
87 92
|
eqbrtrrid |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
| 94 |
59 93
|
ge0p1rpd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + 1 ) e. RR+ ) |
| 95 |
94 89
|
rpdivcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) + 1 ) / x ) e. RR+ ) |
| 96 |
|
rprege0 |
|- ( ( ( ( log ` x ) + 1 ) / x ) e. RR+ -> ( ( ( ( log ` x ) + 1 ) / x ) e. RR /\ 0 <_ ( ( ( log ` x ) + 1 ) / x ) ) ) |
| 97 |
|
absid |
|- ( ( ( ( ( log ` x ) + 1 ) / x ) e. RR /\ 0 <_ ( ( ( log ` x ) + 1 ) / x ) ) -> ( abs ` ( ( ( log ` x ) + 1 ) / x ) ) = ( ( ( log ` x ) + 1 ) / x ) ) |
| 98 |
95 96 97
|
3syl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) + 1 ) / x ) ) = ( ( ( log ` x ) + 1 ) / x ) ) |
| 99 |
86 98
|
eqtrd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) ) = ( ( ( log ` x ) + 1 ) / x ) ) |
| 100 |
65 83 99
|
3brtr4d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) ) <_ ( abs ` ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) ) ) |
| 101 |
1 2 31 35 46 100
|
rlimsqzlem |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ~~>r 1 ) |
| 102 |
101
|
mptru |
|- ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ~~>r 1 |