Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( T. -> 1 e. RR ) |
2 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
3 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
4 |
3
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
5 |
4
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
6 |
|
1cnd |
|- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
7 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
8 |
7
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) |
9 |
|
divdir |
|- ( ( ( log ` x ) e. CC /\ 1 e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( log ` x ) + 1 ) / x ) = ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) |
10 |
5 6 8 9
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) + 1 ) / x ) = ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) |
11 |
10
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) + 1 ) / x ) ) = ( x e. RR+ |-> ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) ) |
12 |
|
simpr |
|- ( ( T. /\ x e. RR+ ) -> x e. RR+ ) |
13 |
4 12
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) / x ) e. RR ) |
14 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
15 |
14
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
16 |
15
|
rpred |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR ) |
17 |
8
|
simpld |
|- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
18 |
17
|
cxp1d |
|- ( ( T. /\ x e. RR+ ) -> ( x ^c 1 ) = x ) |
19 |
18
|
oveq2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) / ( x ^c 1 ) ) = ( ( log ` x ) / x ) ) |
20 |
19
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c 1 ) ) ) = ( x e. RR+ |-> ( ( log ` x ) / x ) ) ) |
21 |
|
1rp |
|- 1 e. RR+ |
22 |
|
cxploglim |
|- ( 1 e. RR+ -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c 1 ) ) ) ~~>r 0 ) |
23 |
21 22
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c 1 ) ) ) ~~>r 0 ) |
24 |
20 23
|
eqbrtrrd |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / x ) ) ~~>r 0 ) |
25 |
|
ax-1cn |
|- 1 e. CC |
26 |
|
divrcnv |
|- ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) |
27 |
25 26
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) |
28 |
13 16 24 27
|
rlimadd |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) / x ) + ( 1 / x ) ) ) ~~>r ( 0 + 0 ) ) |
29 |
11 28
|
eqbrtrd |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) + 1 ) / x ) ) ~~>r ( 0 + 0 ) ) |
30 |
|
00id |
|- ( 0 + 0 ) = 0 |
31 |
29 30
|
breqtrdi |
|- ( T. -> ( x e. RR+ |-> ( ( ( log ` x ) + 1 ) / x ) ) ~~>r 0 ) |
32 |
|
peano2re |
|- ( ( log ` x ) e. RR -> ( ( log ` x ) + 1 ) e. RR ) |
33 |
4 32
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) + 1 ) e. RR ) |
34 |
33 12
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) + 1 ) / x ) e. RR ) |
35 |
34
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) + 1 ) / x ) e. CC ) |
36 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
37 |
36
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
38 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
39 |
|
faccl |
|- ( ( |_ ` x ) e. NN0 -> ( ! ` ( |_ ` x ) ) e. NN ) |
40 |
37 38 39
|
3syl |
|- ( ( T. /\ x e. RR+ ) -> ( ! ` ( |_ ` x ) ) e. NN ) |
41 |
40
|
nnrpd |
|- ( ( T. /\ x e. RR+ ) -> ( ! ` ( |_ ` x ) ) e. RR+ ) |
42 |
|
relogcl |
|- ( ( ! ` ( |_ ` x ) ) e. RR+ -> ( log ` ( ! ` ( |_ ` x ) ) ) e. RR ) |
43 |
41 42
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` ( ! ` ( |_ ` x ) ) ) e. RR ) |
44 |
43 12
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. RR ) |
45 |
44
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. CC ) |
46 |
5 45
|
subcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) e. CC ) |
47 |
|
logfacbnd3 |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) ) |
48 |
47
|
adantl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) ) |
49 |
43
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` ( ! ` ( |_ ` x ) ) ) e. CC ) |
50 |
49
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` ( ! ` ( |_ ` x ) ) ) e. CC ) |
51 |
7
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. CC /\ x =/= 0 ) ) |
52 |
51
|
simpld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. CC ) |
53 |
5
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. CC ) |
54 |
|
subcl |
|- ( ( ( log ` x ) e. CC /\ 1 e. CC ) -> ( ( log ` x ) - 1 ) e. CC ) |
55 |
53 25 54
|
sylancl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) - 1 ) e. CC ) |
56 |
52 55
|
mulcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x x. ( ( log ` x ) - 1 ) ) e. CC ) |
57 |
50 56
|
subcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) e. CC ) |
58 |
57
|
abscld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) e. RR ) |
59 |
4
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` x ) e. RR ) |
60 |
59 32
|
syl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + 1 ) e. RR ) |
61 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
62 |
61
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 < x ) ) |
63 |
|
lediv1 |
|- ( ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) e. RR /\ ( ( log ` x ) + 1 ) e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) <-> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) / x ) ) ) |
64 |
58 60 62 63
|
syl3anc |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) <_ ( ( log ` x ) + 1 ) <-> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) / x ) ) ) |
65 |
48 64
|
mpbid |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) / x ) ) |
66 |
51
|
simprd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x =/= 0 ) |
67 |
55 52 66
|
divcan3d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( x x. ( ( log ` x ) - 1 ) ) / x ) = ( ( log ` x ) - 1 ) ) |
68 |
67
|
oveq1d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( x x. ( ( log ` x ) - 1 ) ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) = ( ( ( log ` x ) - 1 ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
69 |
|
divsubdir |
|- ( ( ( x x. ( ( log ` x ) - 1 ) ) e. CC /\ ( log ` ( ! ` ( |_ ` x ) ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) = ( ( ( x x. ( ( log ` x ) - 1 ) ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
70 |
56 50 51 69
|
syl3anc |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) = ( ( ( x x. ( ( log ` x ) - 1 ) ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
71 |
45
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. CC ) |
72 |
|
1cnd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 e. CC ) |
73 |
53 71 72
|
sub32d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) = ( ( ( log ` x ) - 1 ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) |
74 |
68 70 73
|
3eqtr4rd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) = ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) |
75 |
74
|
fveq2d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) ) = ( abs ` ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) ) |
76 |
56 50
|
subcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) e. CC ) |
77 |
76 52 66
|
absdivd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) = ( ( abs ` ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) / ( abs ` x ) ) ) |
78 |
56 50
|
abssubd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) = ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ) |
79 |
36
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 <_ x ) ) |
80 |
|
absid |
|- ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) |
81 |
79 80
|
syl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` x ) = x ) |
82 |
78 81
|
oveq12d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( abs ` ( ( x x. ( ( log ` x ) - 1 ) ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) / ( abs ` x ) ) = ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) ) |
83 |
75 77 82
|
3eqtrd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) ) = ( ( abs ` ( ( log ` ( ! ` ( |_ ` x ) ) ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) / x ) ) |
84 |
35
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) + 1 ) / x ) e. CC ) |
85 |
84
|
subid1d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) = ( ( ( log ` x ) + 1 ) / x ) ) |
86 |
85
|
fveq2d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) ) = ( abs ` ( ( ( log ` x ) + 1 ) / x ) ) ) |
87 |
|
log1 |
|- ( log ` 1 ) = 0 |
88 |
|
simprr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
89 |
12
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
90 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
91 |
21 89 90
|
sylancr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
92 |
88 91
|
mpbid |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
93 |
87 92
|
eqbrtrrid |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
94 |
59 93
|
ge0p1rpd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( log ` x ) + 1 ) e. RR+ ) |
95 |
94 89
|
rpdivcld |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( ( log ` x ) + 1 ) / x ) e. RR+ ) |
96 |
|
rprege0 |
|- ( ( ( ( log ` x ) + 1 ) / x ) e. RR+ -> ( ( ( ( log ` x ) + 1 ) / x ) e. RR /\ 0 <_ ( ( ( log ` x ) + 1 ) / x ) ) ) |
97 |
|
absid |
|- ( ( ( ( ( log ` x ) + 1 ) / x ) e. RR /\ 0 <_ ( ( ( log ` x ) + 1 ) / x ) ) -> ( abs ` ( ( ( log ` x ) + 1 ) / x ) ) = ( ( ( log ` x ) + 1 ) / x ) ) |
98 |
95 96 97
|
3syl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) + 1 ) / x ) ) = ( ( ( log ` x ) + 1 ) / x ) ) |
99 |
86 98
|
eqtrd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) ) = ( ( ( log ` x ) + 1 ) / x ) ) |
100 |
65 83 99
|
3brtr4d |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - 1 ) ) <_ ( abs ` ( ( ( ( log ` x ) + 1 ) / x ) - 0 ) ) ) |
101 |
1 2 31 35 46 100
|
rlimsqzlem |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ~~>r 1 ) |
102 |
101
|
mptru |
|- ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ~~>r 1 |