| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfi1fseq.1 |
|- ( ph -> F e. MblFn ) |
| 2 |
|
mbfi1fseq.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
| 3 |
|
mbfi1fseq.3 |
|- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
| 4 |
|
mbfi1fseq.4 |
|- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
| 5 |
1 2 3 4
|
mbfi1fseqlem2 |
|- ( A e. NN -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ A e. NN ) -> ( G ` A ) = ( x e. RR |-> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) ) ) |
| 7 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 8 |
|
simpr |
|- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
| 9 |
|
ffvelcdm |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 10 |
2 8 9
|
syl2an |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 11 |
7 10
|
sselid |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
| 12 |
|
2nn |
|- 2 e. NN |
| 13 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
| 14 |
|
nnexpcl |
|- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
| 15 |
12 13 14
|
sylancr |
|- ( m e. NN -> ( 2 ^ m ) e. NN ) |
| 16 |
15
|
ad2antrl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
| 17 |
16
|
nnred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
| 18 |
11 17
|
remulcld |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
| 19 |
|
reflcl |
|- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 21 |
20 16
|
nndivred |
|- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 22 |
21
|
ralrimivva |
|- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 23 |
3
|
fmpo |
|- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR <-> J : ( NN X. RR ) --> RR ) |
| 24 |
22 23
|
sylib |
|- ( ph -> J : ( NN X. RR ) --> RR ) |
| 25 |
|
fovcdm |
|- ( ( J : ( NN X. RR ) --> RR /\ A e. NN /\ x e. RR ) -> ( A J x ) e. RR ) |
| 26 |
24 25
|
syl3an1 |
|- ( ( ph /\ A e. NN /\ x e. RR ) -> ( A J x ) e. RR ) |
| 27 |
26
|
3expa |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A J x ) e. RR ) |
| 28 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 29 |
28
|
ad2antlr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. RR ) |
| 30 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
| 31 |
|
nnexpcl |
|- ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) |
| 32 |
12 30 31
|
sylancr |
|- ( A e. NN -> ( 2 ^ A ) e. NN ) |
| 33 |
32
|
ad2antlr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. NN ) |
| 34 |
|
nnre |
|- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) e. RR ) |
| 35 |
|
nngt0 |
|- ( ( 2 ^ A ) e. NN -> 0 < ( 2 ^ A ) ) |
| 36 |
34 35
|
jca |
|- ( ( 2 ^ A ) e. NN -> ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) |
| 37 |
33 36
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) |
| 38 |
|
lemul1 |
|- ( ( ( A J x ) e. RR /\ A e. RR /\ ( ( 2 ^ A ) e. RR /\ 0 < ( 2 ^ A ) ) ) -> ( ( A J x ) <_ A <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
| 39 |
27 29 37 38
|
syl3anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( A J x ) <_ A <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
| 40 |
39
|
biimpa |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) |
| 41 |
|
simpr |
|- ( ( m = A /\ y = x ) -> y = x ) |
| 42 |
41
|
fveq2d |
|- ( ( m = A /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
| 43 |
|
simpl |
|- ( ( m = A /\ y = x ) -> m = A ) |
| 44 |
43
|
oveq2d |
|- ( ( m = A /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ A ) ) |
| 45 |
42 44
|
oveq12d |
|- ( ( m = A /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ A ) ) ) |
| 46 |
45
|
fveq2d |
|- ( ( m = A /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
| 47 |
46 44
|
oveq12d |
|- ( ( m = A /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
| 48 |
|
ovex |
|- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) e. _V |
| 49 |
47 3 48
|
ovmpoa |
|- ( ( A e. NN /\ x e. RR ) -> ( A J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
| 50 |
49
|
ad4ant23 |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) ) |
| 51 |
50
|
oveq1d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) = ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) x. ( 2 ^ A ) ) ) |
| 52 |
2
|
adantr |
|- ( ( ph /\ A e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
| 53 |
52
|
ffvelcdmda |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 54 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 55 |
53 54
|
sylib |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 56 |
55
|
simpld |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 57 |
33
|
nnred |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. RR ) |
| 58 |
56 57
|
remulcld |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( F ` x ) x. ( 2 ^ A ) ) e. RR ) |
| 59 |
33
|
nnnn0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. NN0 ) |
| 60 |
59
|
nn0ge0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 <_ ( 2 ^ A ) ) |
| 61 |
|
mulge0 |
|- ( ( ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) /\ ( ( 2 ^ A ) e. RR /\ 0 <_ ( 2 ^ A ) ) ) -> 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) |
| 62 |
55 57 60 61
|
syl12anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) |
| 63 |
|
flge0nn0 |
|- ( ( ( ( F ` x ) x. ( 2 ^ A ) ) e. RR /\ 0 <_ ( ( F ` x ) x. ( 2 ^ A ) ) ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
| 64 |
58 62 63
|
syl2anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
| 65 |
64
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. NN0 ) |
| 66 |
65
|
nn0cnd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) e. CC ) |
| 67 |
33
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) e. NN ) |
| 68 |
67
|
nncnd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) e. CC ) |
| 69 |
67
|
nnne0d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( 2 ^ A ) =/= 0 ) |
| 70 |
66 68 69
|
divcan1d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) / ( 2 ^ A ) ) x. ( 2 ^ A ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
| 71 |
51 70
|
eqtrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ A ) ) ) ) |
| 72 |
71 65
|
eqeltrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. NN0 ) |
| 73 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 74 |
72 73
|
eleqtrdi |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) ) |
| 75 |
|
nnmulcl |
|- ( ( A e. NN /\ ( 2 ^ A ) e. NN ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 76 |
32 75
|
mpdan |
|- ( A e. NN -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 77 |
76
|
ad2antlr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 78 |
77
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A x. ( 2 ^ A ) ) e. NN ) |
| 79 |
78
|
nnzd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A x. ( 2 ^ A ) ) e. ZZ ) |
| 80 |
|
elfz5 |
|- ( ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) /\ ( A x. ( 2 ^ A ) ) e. ZZ ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
| 81 |
74 79 80
|
syl2anc |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) <-> ( ( A J x ) x. ( 2 ^ A ) ) <_ ( A x. ( 2 ^ A ) ) ) ) |
| 82 |
40 81
|
mpbird |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 83 |
|
oveq1 |
|- ( m = ( ( A J x ) x. ( 2 ^ A ) ) -> ( m / ( 2 ^ A ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 84 |
|
eqid |
|- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) = ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) |
| 85 |
|
ovex |
|- ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) e. _V |
| 86 |
83 84 85
|
fvmpt |
|- ( ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 87 |
82 86
|
syl |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 88 |
27
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. RR ) |
| 89 |
88
|
recnd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. CC ) |
| 90 |
89 68 69
|
divcan4d |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( ( A J x ) x. ( 2 ^ A ) ) / ( 2 ^ A ) ) = ( A J x ) ) |
| 91 |
87 90
|
eqtrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) = ( A J x ) ) |
| 92 |
|
elfznn0 |
|- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> m e. NN0 ) |
| 93 |
92
|
nn0red |
|- ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> m e. RR ) |
| 94 |
32
|
adantl |
|- ( ( ph /\ A e. NN ) -> ( 2 ^ A ) e. NN ) |
| 95 |
|
nndivre |
|- ( ( m e. RR /\ ( 2 ^ A ) e. NN ) -> ( m / ( 2 ^ A ) ) e. RR ) |
| 96 |
93 94 95
|
syl2anr |
|- ( ( ( ph /\ A e. NN ) /\ m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( m / ( 2 ^ A ) ) e. RR ) |
| 97 |
96
|
fmpttd |
|- ( ( ph /\ A e. NN ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) : ( 0 ... ( A x. ( 2 ^ A ) ) ) --> RR ) |
| 98 |
97
|
ffnd |
|- ( ( ph /\ A e. NN ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 99 |
98
|
adantr |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 100 |
99
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 101 |
|
fnfvelrn |
|- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ ( ( A J x ) x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 102 |
100 82 101
|
syl2anc |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( ( A J x ) x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 103 |
91 102
|
eqeltrrd |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ ( A J x ) <_ A ) -> ( A J x ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 104 |
77
|
nnnn0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. NN0 ) |
| 105 |
104 73
|
eleqtrdi |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) ) |
| 106 |
|
eluzfz2 |
|- ( ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) -> ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 107 |
105 106
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 108 |
|
oveq1 |
|- ( m = ( A x. ( 2 ^ A ) ) -> ( m / ( 2 ^ A ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 109 |
|
ovex |
|- ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) e. _V |
| 110 |
108 84 109
|
fvmpt |
|- ( ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 111 |
107 110
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) ) |
| 112 |
29
|
recnd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. CC ) |
| 113 |
33
|
nncnd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) e. CC ) |
| 114 |
33
|
nnne0d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 2 ^ A ) =/= 0 ) |
| 115 |
112 113 114
|
divcan4d |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( A x. ( 2 ^ A ) ) / ( 2 ^ A ) ) = A ) |
| 116 |
111 115
|
eqtrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) = A ) |
| 117 |
|
fnfvelrn |
|- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ ( A x. ( 2 ^ A ) ) e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 118 |
99 107 117
|
syl2anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` ( A x. ( 2 ^ A ) ) ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 119 |
116 118
|
eqeltrrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> A e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 120 |
119
|
adantr |
|- ( ( ( ( ph /\ A e. NN ) /\ x e. RR ) /\ -. ( A J x ) <_ A ) -> A e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 121 |
103 120
|
ifclda |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> if ( ( A J x ) <_ A , ( A J x ) , A ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 122 |
|
eluzfz1 |
|- ( ( A x. ( 2 ^ A ) ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 123 |
105 122
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) |
| 124 |
|
oveq1 |
|- ( m = 0 -> ( m / ( 2 ^ A ) ) = ( 0 / ( 2 ^ A ) ) ) |
| 125 |
|
ovex |
|- ( 0 / ( 2 ^ A ) ) e. _V |
| 126 |
124 84 125
|
fvmpt |
|- ( 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = ( 0 / ( 2 ^ A ) ) ) |
| 127 |
123 126
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = ( 0 / ( 2 ^ A ) ) ) |
| 128 |
|
nncn |
|- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) e. CC ) |
| 129 |
|
nnne0 |
|- ( ( 2 ^ A ) e. NN -> ( 2 ^ A ) =/= 0 ) |
| 130 |
128 129
|
div0d |
|- ( ( 2 ^ A ) e. NN -> ( 0 / ( 2 ^ A ) ) = 0 ) |
| 131 |
33 130
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( 0 / ( 2 ^ A ) ) = 0 ) |
| 132 |
127 131
|
eqtrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) = 0 ) |
| 133 |
|
fnfvelrn |
|- ( ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) Fn ( 0 ... ( A x. ( 2 ^ A ) ) ) /\ 0 e. ( 0 ... ( A x. ( 2 ^ A ) ) ) ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 134 |
99 123 133
|
syl2anc |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> ( ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ` 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 135 |
132 134
|
eqeltrrd |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> 0 e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 136 |
121 135
|
ifcld |
|- ( ( ( ph /\ A e. NN ) /\ x e. RR ) -> if ( x e. ( -u A [,] A ) , if ( ( A J x ) <_ A , ( A J x ) , A ) , 0 ) e. ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |
| 137 |
6 136
|
fmpt3d |
|- ( ( ph /\ A e. NN ) -> ( G ` A ) : RR --> ran ( m e. ( 0 ... ( A x. ( 2 ^ A ) ) ) |-> ( m / ( 2 ^ A ) ) ) ) |