Step |
Hyp |
Ref |
Expression |
1 |
|
1n0 |
|- 1o =/= (/) |
2 |
|
neeq1 |
|- ( ( rank ` A ) = 1o -> ( ( rank ` A ) =/= (/) <-> 1o =/= (/) ) ) |
3 |
1 2
|
mpbiri |
|- ( ( rank ` A ) = 1o -> ( rank ` A ) =/= (/) ) |
4 |
3
|
neneqd |
|- ( ( rank ` A ) = 1o -> -. ( rank ` A ) = (/) ) |
5 |
|
fvprc |
|- ( -. A e. _V -> ( rank ` A ) = (/) ) |
6 |
4 5
|
nsyl2 |
|- ( ( rank ` A ) = 1o -> A e. _V ) |
7 |
|
fveqeq2 |
|- ( x = A -> ( ( rank ` x ) = 1o <-> ( rank ` A ) = 1o ) ) |
8 |
|
eqeq1 |
|- ( x = A -> ( x = 1o <-> A = 1o ) ) |
9 |
7 8
|
imbi12d |
|- ( x = A -> ( ( ( rank ` x ) = 1o -> x = 1o ) <-> ( ( rank ` A ) = 1o -> A = 1o ) ) ) |
10 |
|
neeq1 |
|- ( ( rank ` x ) = 1o -> ( ( rank ` x ) =/= (/) <-> 1o =/= (/) ) ) |
11 |
1 10
|
mpbiri |
|- ( ( rank ` x ) = 1o -> ( rank ` x ) =/= (/) ) |
12 |
|
vex |
|- x e. _V |
13 |
12
|
rankeq0 |
|- ( x = (/) <-> ( rank ` x ) = (/) ) |
14 |
13
|
necon3bii |
|- ( x =/= (/) <-> ( rank ` x ) =/= (/) ) |
15 |
11 14
|
sylibr |
|- ( ( rank ` x ) = 1o -> x =/= (/) ) |
16 |
12
|
rankval |
|- ( rank ` x ) = |^| { y e. On | x e. ( R1 ` suc y ) } |
17 |
16
|
eqeq1i |
|- ( ( rank ` x ) = 1o <-> |^| { y e. On | x e. ( R1 ` suc y ) } = 1o ) |
18 |
|
ssrab2 |
|- { y e. On | x e. ( R1 ` suc y ) } C_ On |
19 |
|
elirr |
|- -. 1o e. 1o |
20 |
|
1oex |
|- 1o e. _V |
21 |
|
id |
|- ( _V = 1o -> _V = 1o ) |
22 |
20 21
|
eleqtrid |
|- ( _V = 1o -> 1o e. 1o ) |
23 |
19 22
|
mto |
|- -. _V = 1o |
24 |
|
inteq |
|- ( { y e. On | x e. ( R1 ` suc y ) } = (/) -> |^| { y e. On | x e. ( R1 ` suc y ) } = |^| (/) ) |
25 |
|
int0 |
|- |^| (/) = _V |
26 |
24 25
|
eqtrdi |
|- ( { y e. On | x e. ( R1 ` suc y ) } = (/) -> |^| { y e. On | x e. ( R1 ` suc y ) } = _V ) |
27 |
26
|
eqeq1d |
|- ( { y e. On | x e. ( R1 ` suc y ) } = (/) -> ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o <-> _V = 1o ) ) |
28 |
23 27
|
mtbiri |
|- ( { y e. On | x e. ( R1 ` suc y ) } = (/) -> -. |^| { y e. On | x e. ( R1 ` suc y ) } = 1o ) |
29 |
28
|
necon2ai |
|- ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o -> { y e. On | x e. ( R1 ` suc y ) } =/= (/) ) |
30 |
|
onint |
|- ( ( { y e. On | x e. ( R1 ` suc y ) } C_ On /\ { y e. On | x e. ( R1 ` suc y ) } =/= (/) ) -> |^| { y e. On | x e. ( R1 ` suc y ) } e. { y e. On | x e. ( R1 ` suc y ) } ) |
31 |
18 29 30
|
sylancr |
|- ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o -> |^| { y e. On | x e. ( R1 ` suc y ) } e. { y e. On | x e. ( R1 ` suc y ) } ) |
32 |
|
eleq1 |
|- ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o -> ( |^| { y e. On | x e. ( R1 ` suc y ) } e. { y e. On | x e. ( R1 ` suc y ) } <-> 1o e. { y e. On | x e. ( R1 ` suc y ) } ) ) |
33 |
31 32
|
mpbid |
|- ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o -> 1o e. { y e. On | x e. ( R1 ` suc y ) } ) |
34 |
|
suceq |
|- ( y = 1o -> suc y = suc 1o ) |
35 |
34
|
fveq2d |
|- ( y = 1o -> ( R1 ` suc y ) = ( R1 ` suc 1o ) ) |
36 |
|
df-1o |
|- 1o = suc (/) |
37 |
36
|
fveq2i |
|- ( R1 ` 1o ) = ( R1 ` suc (/) ) |
38 |
|
0elon |
|- (/) e. On |
39 |
|
r1suc |
|- ( (/) e. On -> ( R1 ` suc (/) ) = ~P ( R1 ` (/) ) ) |
40 |
38 39
|
ax-mp |
|- ( R1 ` suc (/) ) = ~P ( R1 ` (/) ) |
41 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
42 |
41
|
pweqi |
|- ~P ( R1 ` (/) ) = ~P (/) |
43 |
37 40 42
|
3eqtri |
|- ( R1 ` 1o ) = ~P (/) |
44 |
43
|
pweqi |
|- ~P ( R1 ` 1o ) = ~P ~P (/) |
45 |
|
pw0 |
|- ~P (/) = { (/) } |
46 |
45
|
pweqi |
|- ~P ~P (/) = ~P { (/) } |
47 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
48 |
44 46 47
|
3eqtrri |
|- { (/) , { (/) } } = ~P ( R1 ` 1o ) |
49 |
|
1on |
|- 1o e. On |
50 |
|
r1suc |
|- ( 1o e. On -> ( R1 ` suc 1o ) = ~P ( R1 ` 1o ) ) |
51 |
49 50
|
ax-mp |
|- ( R1 ` suc 1o ) = ~P ( R1 ` 1o ) |
52 |
48 51
|
eqtr4i |
|- { (/) , { (/) } } = ( R1 ` suc 1o ) |
53 |
35 52
|
eqtr4di |
|- ( y = 1o -> ( R1 ` suc y ) = { (/) , { (/) } } ) |
54 |
53
|
eleq2d |
|- ( y = 1o -> ( x e. ( R1 ` suc y ) <-> x e. { (/) , { (/) } } ) ) |
55 |
54
|
elrab |
|- ( 1o e. { y e. On | x e. ( R1 ` suc y ) } <-> ( 1o e. On /\ x e. { (/) , { (/) } } ) ) |
56 |
33 55
|
sylib |
|- ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o -> ( 1o e. On /\ x e. { (/) , { (/) } } ) ) |
57 |
12
|
elpr |
|- ( x e. { (/) , { (/) } } <-> ( x = (/) \/ x = { (/) } ) ) |
58 |
|
df-ne |
|- ( x =/= (/) <-> -. x = (/) ) |
59 |
|
orel1 |
|- ( -. x = (/) -> ( ( x = (/) \/ x = { (/) } ) -> x = { (/) } ) ) |
60 |
58 59
|
sylbi |
|- ( x =/= (/) -> ( ( x = (/) \/ x = { (/) } ) -> x = { (/) } ) ) |
61 |
|
df1o2 |
|- 1o = { (/) } |
62 |
|
eqeq2 |
|- ( x = { (/) } -> ( 1o = x <-> 1o = { (/) } ) ) |
63 |
61 62
|
mpbiri |
|- ( x = { (/) } -> 1o = x ) |
64 |
63
|
eqcomd |
|- ( x = { (/) } -> x = 1o ) |
65 |
60 64
|
syl6com |
|- ( ( x = (/) \/ x = { (/) } ) -> ( x =/= (/) -> x = 1o ) ) |
66 |
57 65
|
sylbi |
|- ( x e. { (/) , { (/) } } -> ( x =/= (/) -> x = 1o ) ) |
67 |
66
|
adantl |
|- ( ( 1o e. On /\ x e. { (/) , { (/) } } ) -> ( x =/= (/) -> x = 1o ) ) |
68 |
56 67
|
syl |
|- ( |^| { y e. On | x e. ( R1 ` suc y ) } = 1o -> ( x =/= (/) -> x = 1o ) ) |
69 |
17 68
|
sylbi |
|- ( ( rank ` x ) = 1o -> ( x =/= (/) -> x = 1o ) ) |
70 |
15 69
|
mpd |
|- ( ( rank ` x ) = 1o -> x = 1o ) |
71 |
9 70
|
vtoclg |
|- ( A e. _V -> ( ( rank ` A ) = 1o -> A = 1o ) ) |
72 |
6 71
|
mpcom |
|- ( ( rank ` A ) = 1o -> A = 1o ) |
73 |
|
fveq2 |
|- ( A = 1o -> ( rank ` A ) = ( rank ` 1o ) ) |
74 |
|
r111 |
|- R1 : On -1-1-> _V |
75 |
|
f1dm |
|- ( R1 : On -1-1-> _V -> dom R1 = On ) |
76 |
74 75
|
ax-mp |
|- dom R1 = On |
77 |
49 76
|
eleqtrri |
|- 1o e. dom R1 |
78 |
|
rankonid |
|- ( 1o e. dom R1 <-> ( rank ` 1o ) = 1o ) |
79 |
77 78
|
mpbi |
|- ( rank ` 1o ) = 1o |
80 |
73 79
|
eqtrdi |
|- ( A = 1o -> ( rank ` A ) = 1o ) |
81 |
72 80
|
impbii |
|- ( ( rank ` A ) = 1o <-> A = 1o ) |
82 |
61
|
eqeq2i |
|- ( A = 1o <-> A = { (/) } ) |
83 |
81 82
|
bitri |
|- ( ( rank ` A ) = 1o <-> A = { (/) } ) |