| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1n0 |
|
| 2 |
|
neeq1 |
|
| 3 |
1 2
|
mpbiri |
|
| 4 |
3
|
neneqd |
|
| 5 |
|
fvprc |
|
| 6 |
4 5
|
nsyl2 |
|
| 7 |
|
fveqeq2 |
|
| 8 |
|
eqeq1 |
|
| 9 |
7 8
|
imbi12d |
|
| 10 |
|
neeq1 |
|
| 11 |
1 10
|
mpbiri |
|
| 12 |
|
vex |
|
| 13 |
12
|
rankeq0 |
|
| 14 |
13
|
necon3bii |
|
| 15 |
11 14
|
sylibr |
|
| 16 |
12
|
rankval |
|
| 17 |
16
|
eqeq1i |
|
| 18 |
|
ssrab2 |
|
| 19 |
|
elirr |
|
| 20 |
|
1oex |
|
| 21 |
|
id |
|
| 22 |
20 21
|
eleqtrid |
|
| 23 |
19 22
|
mto |
|
| 24 |
|
inteq |
|
| 25 |
|
int0 |
|
| 26 |
24 25
|
eqtrdi |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
23 27
|
mtbiri |
|
| 29 |
28
|
necon2ai |
|
| 30 |
|
onint |
|
| 31 |
18 29 30
|
sylancr |
|
| 32 |
|
eleq1 |
|
| 33 |
31 32
|
mpbid |
|
| 34 |
|
suceq |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
df-1o |
|
| 37 |
36
|
fveq2i |
|
| 38 |
|
0elon |
|
| 39 |
|
r1suc |
|
| 40 |
38 39
|
ax-mp |
|
| 41 |
|
r10 |
|
| 42 |
41
|
pweqi |
|
| 43 |
37 40 42
|
3eqtri |
|
| 44 |
43
|
pweqi |
|
| 45 |
|
pw0 |
|
| 46 |
45
|
pweqi |
|
| 47 |
|
pwpw0 |
|
| 48 |
44 46 47
|
3eqtrri |
|
| 49 |
|
1on |
|
| 50 |
|
r1suc |
|
| 51 |
49 50
|
ax-mp |
|
| 52 |
48 51
|
eqtr4i |
|
| 53 |
35 52
|
eqtr4di |
|
| 54 |
53
|
eleq2d |
|
| 55 |
54
|
elrab |
|
| 56 |
33 55
|
sylib |
|
| 57 |
12
|
elpr |
|
| 58 |
|
df-ne |
|
| 59 |
|
orel1 |
|
| 60 |
58 59
|
sylbi |
|
| 61 |
|
df1o2 |
|
| 62 |
|
eqeq2 |
|
| 63 |
61 62
|
mpbiri |
|
| 64 |
63
|
eqcomd |
|
| 65 |
60 64
|
syl6com |
|
| 66 |
57 65
|
sylbi |
|
| 67 |
66
|
adantl |
|
| 68 |
56 67
|
syl |
|
| 69 |
17 68
|
sylbi |
|
| 70 |
15 69
|
mpd |
|
| 71 |
9 70
|
vtoclg |
|
| 72 |
6 71
|
mpcom |
|
| 73 |
|
fveq2 |
|
| 74 |
|
r111 |
|
| 75 |
|
f1dm |
|
| 76 |
74 75
|
ax-mp |
|
| 77 |
49 76
|
eleqtrri |
|
| 78 |
|
rankonid |
|
| 79 |
77 78
|
mpbi |
|
| 80 |
73 79
|
eqtrdi |
|
| 81 |
72 80
|
impbii |
|
| 82 |
61
|
eqeq2i |
|
| 83 |
81 82
|
bitri |
|