Metamath Proof Explorer


Theorem rankeq1o

Description: The only set with rank 1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015)

Ref Expression
Assertion rankeq1o rank A = 1 𝑜 A =

Proof

Step Hyp Ref Expression
1 1n0 1 𝑜
2 neeq1 rank A = 1 𝑜 rank A 1 𝑜
3 1 2 mpbiri rank A = 1 𝑜 rank A
4 3 neneqd rank A = 1 𝑜 ¬ rank A =
5 fvprc ¬ A V rank A =
6 4 5 nsyl2 rank A = 1 𝑜 A V
7 fveqeq2 x = A rank x = 1 𝑜 rank A = 1 𝑜
8 eqeq1 x = A x = 1 𝑜 A = 1 𝑜
9 7 8 imbi12d x = A rank x = 1 𝑜 x = 1 𝑜 rank A = 1 𝑜 A = 1 𝑜
10 neeq1 rank x = 1 𝑜 rank x 1 𝑜
11 1 10 mpbiri rank x = 1 𝑜 rank x
12 vex x V
13 12 rankeq0 x = rank x =
14 13 necon3bii x rank x
15 11 14 sylibr rank x = 1 𝑜 x
16 12 rankval rank x = y On | x R1 suc y
17 16 eqeq1i rank x = 1 𝑜 y On | x R1 suc y = 1 𝑜
18 ssrab2 y On | x R1 suc y On
19 elirr ¬ 1 𝑜 1 𝑜
20 1oex 1 𝑜 V
21 id V = 1 𝑜 V = 1 𝑜
22 20 21 eleqtrid V = 1 𝑜 1 𝑜 1 𝑜
23 19 22 mto ¬ V = 1 𝑜
24 inteq y On | x R1 suc y = y On | x R1 suc y =
25 int0 = V
26 24 25 eqtrdi y On | x R1 suc y = y On | x R1 suc y = V
27 26 eqeq1d y On | x R1 suc y = y On | x R1 suc y = 1 𝑜 V = 1 𝑜
28 23 27 mtbiri y On | x R1 suc y = ¬ y On | x R1 suc y = 1 𝑜
29 28 necon2ai y On | x R1 suc y = 1 𝑜 y On | x R1 suc y
30 onint y On | x R1 suc y On y On | x R1 suc y y On | x R1 suc y y On | x R1 suc y
31 18 29 30 sylancr y On | x R1 suc y = 1 𝑜 y On | x R1 suc y y On | x R1 suc y
32 eleq1 y On | x R1 suc y = 1 𝑜 y On | x R1 suc y y On | x R1 suc y 1 𝑜 y On | x R1 suc y
33 31 32 mpbid y On | x R1 suc y = 1 𝑜 1 𝑜 y On | x R1 suc y
34 suceq y = 1 𝑜 suc y = suc 1 𝑜
35 34 fveq2d y = 1 𝑜 R1 suc y = R1 suc 1 𝑜
36 df-1o 1 𝑜 = suc
37 36 fveq2i R1 1 𝑜 = R1 suc
38 0elon On
39 r1suc On R1 suc = 𝒫 R1
40 38 39 ax-mp R1 suc = 𝒫 R1
41 r10 R1 =
42 41 pweqi 𝒫 R1 = 𝒫
43 37 40 42 3eqtri R1 1 𝑜 = 𝒫
44 43 pweqi 𝒫 R1 1 𝑜 = 𝒫 𝒫
45 pw0 𝒫 =
46 45 pweqi 𝒫 𝒫 = 𝒫
47 pwpw0 𝒫 =
48 44 46 47 3eqtrri = 𝒫 R1 1 𝑜
49 1on 1 𝑜 On
50 r1suc 1 𝑜 On R1 suc 1 𝑜 = 𝒫 R1 1 𝑜
51 49 50 ax-mp R1 suc 1 𝑜 = 𝒫 R1 1 𝑜
52 48 51 eqtr4i = R1 suc 1 𝑜
53 35 52 eqtr4di y = 1 𝑜 R1 suc y =
54 53 eleq2d y = 1 𝑜 x R1 suc y x
55 54 elrab 1 𝑜 y On | x R1 suc y 1 𝑜 On x
56 33 55 sylib y On | x R1 suc y = 1 𝑜 1 𝑜 On x
57 12 elpr x x = x =
58 df-ne x ¬ x =
59 orel1 ¬ x = x = x = x =
60 58 59 sylbi x x = x = x =
61 df1o2 1 𝑜 =
62 eqeq2 x = 1 𝑜 = x 1 𝑜 =
63 61 62 mpbiri x = 1 𝑜 = x
64 63 eqcomd x = x = 1 𝑜
65 60 64 syl6com x = x = x x = 1 𝑜
66 57 65 sylbi x x x = 1 𝑜
67 66 adantl 1 𝑜 On x x x = 1 𝑜
68 56 67 syl y On | x R1 suc y = 1 𝑜 x x = 1 𝑜
69 17 68 sylbi rank x = 1 𝑜 x x = 1 𝑜
70 15 69 mpd rank x = 1 𝑜 x = 1 𝑜
71 9 70 vtoclg A V rank A = 1 𝑜 A = 1 𝑜
72 6 71 mpcom rank A = 1 𝑜 A = 1 𝑜
73 fveq2 A = 1 𝑜 rank A = rank 1 𝑜
74 r111 R1 : On 1-1 V
75 f1dm R1 : On 1-1 V dom R1 = On
76 74 75 ax-mp dom R1 = On
77 49 76 eleqtrri 1 𝑜 dom R1
78 rankonid 1 𝑜 dom R1 rank 1 𝑜 = 1 𝑜
79 77 78 mpbi rank 1 𝑜 = 1 𝑜
80 73 79 eqtrdi A = 1 𝑜 rank A = 1 𝑜
81 72 80 impbii rank A = 1 𝑜 A = 1 𝑜
82 61 eqeq2i A = 1 𝑜 A =
83 81 82 bitri rank A = 1 𝑜 A =