| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | subfac.n |  |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | 
						
							| 3 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 4 |  | faccl |  |-  ( N e. NN0 -> ( ! ` N ) e. NN ) | 
						
							| 5 | 3 4 | syl |  |-  ( N e. NN -> ( ! ` N ) e. NN ) | 
						
							| 6 | 5 | nncnd |  |-  ( N e. NN -> ( ! ` N ) e. CC ) | 
						
							| 7 |  | ere |  |-  _e e. RR | 
						
							| 8 | 7 | recni |  |-  _e e. CC | 
						
							| 9 |  | epos |  |-  0 < _e | 
						
							| 10 | 7 9 | gt0ne0ii |  |-  _e =/= 0 | 
						
							| 11 |  | divcl |  |-  ( ( ( ! ` N ) e. CC /\ _e e. CC /\ _e =/= 0 ) -> ( ( ! ` N ) / _e ) e. CC ) | 
						
							| 12 | 8 10 11 | mp3an23 |  |-  ( ( ! ` N ) e. CC -> ( ( ! ` N ) / _e ) e. CC ) | 
						
							| 13 | 6 12 | syl |  |-  ( N e. NN -> ( ( ! ` N ) / _e ) e. CC ) | 
						
							| 14 | 1 2 | subfacf |  |-  S : NN0 --> NN0 | 
						
							| 15 | 14 | ffvelcdmi |  |-  ( N e. NN0 -> ( S ` N ) e. NN0 ) | 
						
							| 16 | 3 15 | syl |  |-  ( N e. NN -> ( S ` N ) e. NN0 ) | 
						
							| 17 | 16 | nn0cnd |  |-  ( N e. NN -> ( S ` N ) e. CC ) | 
						
							| 18 | 13 17 | subcld |  |-  ( N e. NN -> ( ( ( ! ` N ) / _e ) - ( S ` N ) ) e. CC ) | 
						
							| 19 | 18 | abscld |  |-  ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) e. RR ) | 
						
							| 20 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 21 | 20 | peano2nnd |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) e. NN ) | 
						
							| 22 | 21 | nnred |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) e. RR ) | 
						
							| 23 | 20 20 | nnmulcld |  |-  ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) e. NN ) | 
						
							| 24 | 22 23 | nndivred |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) e. RR ) | 
						
							| 25 |  | nnrecre |  |-  ( N e. NN -> ( 1 / N ) e. RR ) | 
						
							| 26 |  | eqid |  |-  ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) | 
						
							| 27 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( abs ` -u 1 ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` -u 1 ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 28 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) / ( ! ` ( N + 1 ) ) ) x. ( ( 1 / ( ( N + 1 ) + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) / ( ! ` ( N + 1 ) ) ) x. ( ( 1 / ( ( N + 1 ) + 1 ) ) ^ n ) ) ) | 
						
							| 29 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 30 | 29 | a1i |  |-  ( N e. NN -> -u 1 e. CC ) | 
						
							| 31 |  | ax-1cn |  |-  1 e. CC | 
						
							| 32 | 31 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 33 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 34 | 32 33 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 35 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 36 | 34 35 | eqbrtri |  |-  ( abs ` -u 1 ) <_ 1 | 
						
							| 37 | 36 | a1i |  |-  ( N e. NN -> ( abs ` -u 1 ) <_ 1 ) | 
						
							| 38 | 26 27 28 20 30 37 | eftlub |  |-  ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) ) <_ ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) | 
						
							| 39 | 20 | nnnn0d |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 40 |  | eluznn0 |  |-  ( ( ( N + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. NN0 ) | 
						
							| 41 | 39 40 | sylan |  |-  ( ( N e. NN /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. NN0 ) | 
						
							| 42 | 26 | eftval |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( N e. NN /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 44 | 43 | sumeq2dv |  |-  ( N e. NN -> sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 46 | 34 | oveq1i |  |-  ( ( abs ` -u 1 ) ^ ( N + 1 ) ) = ( 1 ^ ( N + 1 ) ) | 
						
							| 47 | 20 | nnzd |  |-  ( N e. NN -> ( N + 1 ) e. ZZ ) | 
						
							| 48 |  | 1exp |  |-  ( ( N + 1 ) e. ZZ -> ( 1 ^ ( N + 1 ) ) = 1 ) | 
						
							| 49 | 47 48 | syl |  |-  ( N e. NN -> ( 1 ^ ( N + 1 ) ) = 1 ) | 
						
							| 50 | 46 49 | eqtrid |  |-  ( N e. NN -> ( ( abs ` -u 1 ) ^ ( N + 1 ) ) = 1 ) | 
						
							| 51 | 50 | oveq1d |  |-  ( N e. NN -> ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) = ( 1 x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) | 
						
							| 52 |  | faccl |  |-  ( ( N + 1 ) e. NN0 -> ( ! ` ( N + 1 ) ) e. NN ) | 
						
							| 53 | 39 52 | syl |  |-  ( N e. NN -> ( ! ` ( N + 1 ) ) e. NN ) | 
						
							| 54 | 53 20 | nnmulcld |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) e. NN ) | 
						
							| 55 | 22 54 | nndivred |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) e. RR ) | 
						
							| 56 | 55 | recnd |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) e. CC ) | 
						
							| 57 | 56 | mullidd |  |-  ( N e. NN -> ( 1 x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) = ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) | 
						
							| 58 | 51 57 | eqtrd |  |-  ( N e. NN -> ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) = ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) | 
						
							| 59 | 38 45 58 | 3brtr3d |  |-  ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) | 
						
							| 60 |  | eqid |  |-  ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) | 
						
							| 61 |  | eftcl |  |-  ( ( -u 1 e. CC /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 62 | 29 61 | mpan |  |-  ( k e. NN0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 63 | 41 62 | syl |  |-  ( ( N e. NN /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 64 | 26 | eftlcvg |  |-  ( ( -u 1 e. CC /\ ( N + 1 ) e. NN0 ) -> seq ( N + 1 ) ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) | 
						
							| 65 | 29 39 64 | sylancr |  |-  ( N e. NN -> seq ( N + 1 ) ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) | 
						
							| 66 | 60 47 43 63 65 | isumcl |  |-  ( N e. NN -> sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 67 | 66 | abscld |  |-  ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. RR ) | 
						
							| 68 | 5 | nnred |  |-  ( N e. NN -> ( ! ` N ) e. RR ) | 
						
							| 69 | 5 | nngt0d |  |-  ( N e. NN -> 0 < ( ! ` N ) ) | 
						
							| 70 |  | lemul2 |  |-  ( ( ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. RR /\ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) e. RR /\ ( ( ! ` N ) e. RR /\ 0 < ( ! ` N ) ) ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) <-> ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <_ ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) ) | 
						
							| 71 | 67 55 68 69 70 | syl112anc |  |-  ( N e. NN -> ( ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) <-> ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <_ ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) ) | 
						
							| 72 | 59 71 | mpbid |  |-  ( N e. NN -> ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <_ ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) | 
						
							| 73 | 1 2 | subfacval2 |  |-  ( N e. NN0 -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 74 | 3 73 | syl |  |-  ( N e. NN -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 75 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 76 |  | pncan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 77 | 75 31 76 | sylancl |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 78 | 77 | oveq2d |  |-  ( N e. NN -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) | 
						
							| 79 | 78 | sumeq1d |  |-  ( N e. NN -> sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 80 | 79 | oveq2d |  |-  ( N e. NN -> ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 81 | 74 80 | eqtr4d |  |-  ( N e. NN -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( N e. NN -> ( ( S ` N ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 83 |  | divrec |  |-  ( ( ( ! ` N ) e. CC /\ _e e. CC /\ _e =/= 0 ) -> ( ( ! ` N ) / _e ) = ( ( ! ` N ) x. ( 1 / _e ) ) ) | 
						
							| 84 | 8 10 83 | mp3an23 |  |-  ( ( ! ` N ) e. CC -> ( ( ! ` N ) / _e ) = ( ( ! ` N ) x. ( 1 / _e ) ) ) | 
						
							| 85 | 6 84 | syl |  |-  ( N e. NN -> ( ( ! ` N ) / _e ) = ( ( ! ` N ) x. ( 1 / _e ) ) ) | 
						
							| 86 |  | df-e |  |-  _e = ( exp ` 1 ) | 
						
							| 87 | 86 | oveq2i |  |-  ( 1 / _e ) = ( 1 / ( exp ` 1 ) ) | 
						
							| 88 |  | efneg |  |-  ( 1 e. CC -> ( exp ` -u 1 ) = ( 1 / ( exp ` 1 ) ) ) | 
						
							| 89 | 31 88 | ax-mp |  |-  ( exp ` -u 1 ) = ( 1 / ( exp ` 1 ) ) | 
						
							| 90 |  | efval |  |-  ( -u 1 e. CC -> ( exp ` -u 1 ) = sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 91 | 29 90 | ax-mp |  |-  ( exp ` -u 1 ) = sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) | 
						
							| 92 | 87 89 91 | 3eqtr2i |  |-  ( 1 / _e ) = sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) | 
						
							| 93 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 94 | 42 | adantl |  |-  ( ( N e. NN /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 95 | 62 | adantl |  |-  ( ( N e. NN /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 96 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 97 | 26 | eftlcvg |  |-  ( ( -u 1 e. CC /\ 0 e. NN0 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) | 
						
							| 98 | 29 96 97 | mp2an |  |-  seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> | 
						
							| 99 | 98 | a1i |  |-  ( N e. NN -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) | 
						
							| 100 | 93 60 39 94 95 99 | isumsplit |  |-  ( N e. NN -> sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 101 | 92 100 | eqtrid |  |-  ( N e. NN -> ( 1 / _e ) = ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 102 | 101 | oveq2d |  |-  ( N e. NN -> ( ( ! ` N ) x. ( 1 / _e ) ) = ( ( ! ` N ) x. ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 103 |  | fzfid |  |-  ( N e. NN -> ( 0 ... ( ( N + 1 ) - 1 ) ) e. Fin ) | 
						
							| 104 |  | elfznn0 |  |-  ( k e. ( 0 ... ( ( N + 1 ) - 1 ) ) -> k e. NN0 ) | 
						
							| 105 | 104 | adantl |  |-  ( ( N e. NN /\ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) -> k e. NN0 ) | 
						
							| 106 | 29 105 61 | sylancr |  |-  ( ( N e. NN /\ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 107 | 103 106 | fsumcl |  |-  ( N e. NN -> sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 108 | 6 107 66 | adddid |  |-  ( N e. NN -> ( ( ! ` N ) x. ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 109 | 85 102 108 | 3eqtrd |  |-  ( N e. NN -> ( ( ! ` N ) / _e ) = ( ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 110 | 82 109 | eqtr4d |  |-  ( N e. NN -> ( ( S ` N ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ! ` N ) / _e ) ) | 
						
							| 111 | 6 66 | mulcld |  |-  ( N e. NN -> ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) | 
						
							| 112 | 13 17 111 | subaddd |  |-  ( N e. NN -> ( ( ( ( ! ` N ) / _e ) - ( S ` N ) ) = ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( ( S ` N ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ! ` N ) / _e ) ) ) | 
						
							| 113 | 110 112 | mpbird |  |-  ( N e. NN -> ( ( ( ! ` N ) / _e ) - ( S ` N ) ) = ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 114 | 113 | fveq2d |  |-  ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) = ( abs ` ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 115 | 6 66 | absmuld |  |-  ( N e. NN -> ( abs ` ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( abs ` ( ! ` N ) ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 116 | 5 | nnnn0d |  |-  ( N e. NN -> ( ! ` N ) e. NN0 ) | 
						
							| 117 | 116 | nn0ge0d |  |-  ( N e. NN -> 0 <_ ( ! ` N ) ) | 
						
							| 118 | 68 117 | absidd |  |-  ( N e. NN -> ( abs ` ( ! ` N ) ) = ( ! ` N ) ) | 
						
							| 119 | 118 | oveq1d |  |-  ( N e. NN -> ( ( abs ` ( ! ` N ) ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 120 | 114 115 119 | 3eqtrd |  |-  ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) = ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 121 |  | facp1 |  |-  ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) | 
						
							| 122 | 3 121 | syl |  |-  ( N e. NN -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 1 ) ) ) | 
						
							| 124 | 20 | nncnd |  |-  ( N e. NN -> ( N + 1 ) e. CC ) | 
						
							| 125 | 6 124 124 | mulassd |  |-  ( N e. NN -> ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 1 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) | 
						
							| 126 | 123 125 | eqtr2d |  |-  ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) | 
						
							| 127 | 126 | oveq2d |  |-  ( N e. NN -> ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) = ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) | 
						
							| 128 | 21 | nncnd |  |-  ( N e. NN -> ( ( N + 1 ) + 1 ) e. CC ) | 
						
							| 129 | 23 | nncnd |  |-  ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) e. CC ) | 
						
							| 130 | 23 | nnne0d |  |-  ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) =/= 0 ) | 
						
							| 131 | 5 | nnne0d |  |-  ( N e. NN -> ( ! ` N ) =/= 0 ) | 
						
							| 132 | 128 129 6 130 131 | divcan5d |  |-  ( N e. NN -> ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) = ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) ) | 
						
							| 133 | 54 | nncnd |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) e. CC ) | 
						
							| 134 | 54 | nnne0d |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) =/= 0 ) | 
						
							| 135 | 6 128 133 134 | divassd |  |-  ( N e. NN -> ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) = ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) | 
						
							| 136 | 127 132 135 | 3eqtr3d |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) | 
						
							| 137 | 72 120 136 | 3brtr4d |  |-  ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) ) | 
						
							| 138 |  | nnmulcl |  |-  ( ( ( ( N + 1 ) + 1 ) e. NN /\ N e. NN ) -> ( ( ( N + 1 ) + 1 ) x. N ) e. NN ) | 
						
							| 139 | 21 138 | mpancom |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) e. NN ) | 
						
							| 140 | 139 | nnred |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) e. RR ) | 
						
							| 141 | 140 | ltp1d |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) < ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) ) | 
						
							| 142 | 129 | mullidd |  |-  ( N e. NN -> ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( N + 1 ) x. ( N + 1 ) ) ) | 
						
							| 143 | 31 | a1i |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 144 | 75 143 124 | adddird |  |-  ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) = ( ( N x. ( N + 1 ) ) + ( 1 x. ( N + 1 ) ) ) ) | 
						
							| 145 | 75 124 | mulcomd |  |-  ( N e. NN -> ( N x. ( N + 1 ) ) = ( ( N + 1 ) x. N ) ) | 
						
							| 146 | 124 | mullidd |  |-  ( N e. NN -> ( 1 x. ( N + 1 ) ) = ( N + 1 ) ) | 
						
							| 147 | 145 146 | oveq12d |  |-  ( N e. NN -> ( ( N x. ( N + 1 ) ) + ( 1 x. ( N + 1 ) ) ) = ( ( ( N + 1 ) x. N ) + ( N + 1 ) ) ) | 
						
							| 148 | 124 143 75 | adddird |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) = ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) ) | 
						
							| 149 | 148 | oveq1d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) = ( ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) + 1 ) ) | 
						
							| 150 | 75 | mullidd |  |-  ( N e. NN -> ( 1 x. N ) = N ) | 
						
							| 151 | 150 | oveq2d |  |-  ( N e. NN -> ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) = ( ( ( N + 1 ) x. N ) + N ) ) | 
						
							| 152 | 151 | oveq1d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) + 1 ) = ( ( ( ( N + 1 ) x. N ) + N ) + 1 ) ) | 
						
							| 153 | 124 75 | mulcld |  |-  ( N e. NN -> ( ( N + 1 ) x. N ) e. CC ) | 
						
							| 154 | 153 75 143 | addassd |  |-  ( N e. NN -> ( ( ( ( N + 1 ) x. N ) + N ) + 1 ) = ( ( ( N + 1 ) x. N ) + ( N + 1 ) ) ) | 
						
							| 155 | 149 152 154 | 3eqtrd |  |-  ( N e. NN -> ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) = ( ( ( N + 1 ) x. N ) + ( N + 1 ) ) ) | 
						
							| 156 | 147 155 | eqtr4d |  |-  ( N e. NN -> ( ( N x. ( N + 1 ) ) + ( 1 x. ( N + 1 ) ) ) = ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) ) | 
						
							| 157 | 142 144 156 | 3eqtrd |  |-  ( N e. NN -> ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) ) | 
						
							| 158 | 141 157 | breqtrrd |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) < ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) | 
						
							| 159 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 160 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 161 | 159 160 | jca |  |-  ( N e. NN -> ( N e. RR /\ 0 < N ) ) | 
						
							| 162 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 163 |  | nnre |  |-  ( ( ( N + 1 ) x. ( N + 1 ) ) e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) e. RR ) | 
						
							| 164 |  | nngt0 |  |-  ( ( ( N + 1 ) x. ( N + 1 ) ) e. NN -> 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) | 
						
							| 165 | 163 164 | jca |  |-  ( ( ( N + 1 ) x. ( N + 1 ) ) e. NN -> ( ( ( N + 1 ) x. ( N + 1 ) ) e. RR /\ 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) ) | 
						
							| 166 | 23 165 | syl |  |-  ( N e. NN -> ( ( ( N + 1 ) x. ( N + 1 ) ) e. RR /\ 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) ) | 
						
							| 167 |  | lt2mul2div |  |-  ( ( ( ( ( N + 1 ) + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) /\ ( 1 e. RR /\ ( ( ( N + 1 ) x. ( N + 1 ) ) e. RR /\ 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) ) ) -> ( ( ( ( N + 1 ) + 1 ) x. N ) < ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) <-> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) < ( 1 / N ) ) ) | 
						
							| 168 | 22 161 162 166 167 | syl22anc |  |-  ( N e. NN -> ( ( ( ( N + 1 ) + 1 ) x. N ) < ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) <-> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) < ( 1 / N ) ) ) | 
						
							| 169 | 158 168 | mpbid |  |-  ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) < ( 1 / N ) ) | 
						
							| 170 | 19 24 25 137 169 | lelttrd |  |-  ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) < ( 1 / N ) ) |