Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
2 |
|
subfac.n |
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
3 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
4 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
5 |
3 4
|
syl |
|- ( N e. NN -> ( ! ` N ) e. NN ) |
6 |
5
|
nncnd |
|- ( N e. NN -> ( ! ` N ) e. CC ) |
7 |
|
ere |
|- _e e. RR |
8 |
7
|
recni |
|- _e e. CC |
9 |
|
epos |
|- 0 < _e |
10 |
7 9
|
gt0ne0ii |
|- _e =/= 0 |
11 |
|
divcl |
|- ( ( ( ! ` N ) e. CC /\ _e e. CC /\ _e =/= 0 ) -> ( ( ! ` N ) / _e ) e. CC ) |
12 |
8 10 11
|
mp3an23 |
|- ( ( ! ` N ) e. CC -> ( ( ! ` N ) / _e ) e. CC ) |
13 |
6 12
|
syl |
|- ( N e. NN -> ( ( ! ` N ) / _e ) e. CC ) |
14 |
1 2
|
subfacf |
|- S : NN0 --> NN0 |
15 |
14
|
ffvelrni |
|- ( N e. NN0 -> ( S ` N ) e. NN0 ) |
16 |
3 15
|
syl |
|- ( N e. NN -> ( S ` N ) e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( N e. NN -> ( S ` N ) e. CC ) |
18 |
13 17
|
subcld |
|- ( N e. NN -> ( ( ( ! ` N ) / _e ) - ( S ` N ) ) e. CC ) |
19 |
18
|
abscld |
|- ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) e. RR ) |
20 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
21 |
20
|
peano2nnd |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) e. NN ) |
22 |
21
|
nnred |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) e. RR ) |
23 |
20 20
|
nnmulcld |
|- ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) e. NN ) |
24 |
22 23
|
nndivred |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) e. RR ) |
25 |
|
nnrecre |
|- ( N e. NN -> ( 1 / N ) e. RR ) |
26 |
|
eqid |
|- ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) |
27 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( abs ` -u 1 ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` -u 1 ) ^ n ) / ( ! ` n ) ) ) |
28 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) / ( ! ` ( N + 1 ) ) ) x. ( ( 1 / ( ( N + 1 ) + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) / ( ! ` ( N + 1 ) ) ) x. ( ( 1 / ( ( N + 1 ) + 1 ) ) ^ n ) ) ) |
29 |
|
neg1cn |
|- -u 1 e. CC |
30 |
29
|
a1i |
|- ( N e. NN -> -u 1 e. CC ) |
31 |
|
ax-1cn |
|- 1 e. CC |
32 |
31
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
33 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
34 |
32 33
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
35 |
|
1le1 |
|- 1 <_ 1 |
36 |
34 35
|
eqbrtri |
|- ( abs ` -u 1 ) <_ 1 |
37 |
36
|
a1i |
|- ( N e. NN -> ( abs ` -u 1 ) <_ 1 ) |
38 |
26 27 28 20 30 37
|
eftlub |
|- ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) ) <_ ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) |
39 |
20
|
nnnn0d |
|- ( N e. NN -> ( N + 1 ) e. NN0 ) |
40 |
|
eluznn0 |
|- ( ( ( N + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. NN0 ) |
41 |
39 40
|
sylan |
|- ( ( N e. NN /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. NN0 ) |
42 |
26
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
43 |
41 42
|
syl |
|- ( ( N e. NN /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
44 |
43
|
sumeq2dv |
|- ( N e. NN -> sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
45 |
44
|
fveq2d |
|- ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
46 |
34
|
oveq1i |
|- ( ( abs ` -u 1 ) ^ ( N + 1 ) ) = ( 1 ^ ( N + 1 ) ) |
47 |
20
|
nnzd |
|- ( N e. NN -> ( N + 1 ) e. ZZ ) |
48 |
|
1exp |
|- ( ( N + 1 ) e. ZZ -> ( 1 ^ ( N + 1 ) ) = 1 ) |
49 |
47 48
|
syl |
|- ( N e. NN -> ( 1 ^ ( N + 1 ) ) = 1 ) |
50 |
46 49
|
syl5eq |
|- ( N e. NN -> ( ( abs ` -u 1 ) ^ ( N + 1 ) ) = 1 ) |
51 |
50
|
oveq1d |
|- ( N e. NN -> ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) = ( 1 x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) |
52 |
|
faccl |
|- ( ( N + 1 ) e. NN0 -> ( ! ` ( N + 1 ) ) e. NN ) |
53 |
39 52
|
syl |
|- ( N e. NN -> ( ! ` ( N + 1 ) ) e. NN ) |
54 |
53 20
|
nnmulcld |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) e. NN ) |
55 |
22 54
|
nndivred |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) e. RR ) |
56 |
55
|
recnd |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) e. CC ) |
57 |
56
|
mulid2d |
|- ( N e. NN -> ( 1 x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) = ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) |
58 |
51 57
|
eqtrd |
|- ( N e. NN -> ( ( ( abs ` -u 1 ) ^ ( N + 1 ) ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) = ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) |
59 |
38 45 58
|
3brtr3d |
|- ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) |
60 |
|
eqid |
|- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
61 |
|
eftcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
62 |
29 61
|
mpan |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
63 |
41 62
|
syl |
|- ( ( N e. NN /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
64 |
26
|
eftlcvg |
|- ( ( -u 1 e. CC /\ ( N + 1 ) e. NN0 ) -> seq ( N + 1 ) ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
65 |
29 39 64
|
sylancr |
|- ( N e. NN -> seq ( N + 1 ) ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
66 |
60 47 43 63 65
|
isumcl |
|- ( N e. NN -> sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
67 |
66
|
abscld |
|- ( N e. NN -> ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. RR ) |
68 |
5
|
nnred |
|- ( N e. NN -> ( ! ` N ) e. RR ) |
69 |
5
|
nngt0d |
|- ( N e. NN -> 0 < ( ! ` N ) ) |
70 |
|
lemul2 |
|- ( ( ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. RR /\ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) e. RR /\ ( ( ! ` N ) e. RR /\ 0 < ( ! ` N ) ) ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) <-> ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <_ ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) ) |
71 |
67 55 68 69 70
|
syl112anc |
|- ( N e. NN -> ( ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) <-> ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <_ ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) ) |
72 |
59 71
|
mpbid |
|- ( N e. NN -> ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <_ ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) |
73 |
1 2
|
subfacval2 |
|- ( N e. NN0 -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
74 |
3 73
|
syl |
|- ( N e. NN -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
75 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
76 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
77 |
75 31 76
|
sylancl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
78 |
77
|
oveq2d |
|- ( N e. NN -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
79 |
78
|
sumeq1d |
|- ( N e. NN -> sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
80 |
79
|
oveq2d |
|- ( N e. NN -> ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
81 |
74 80
|
eqtr4d |
|- ( N e. NN -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
82 |
81
|
oveq1d |
|- ( N e. NN -> ( ( S ` N ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
83 |
|
divrec |
|- ( ( ( ! ` N ) e. CC /\ _e e. CC /\ _e =/= 0 ) -> ( ( ! ` N ) / _e ) = ( ( ! ` N ) x. ( 1 / _e ) ) ) |
84 |
8 10 83
|
mp3an23 |
|- ( ( ! ` N ) e. CC -> ( ( ! ` N ) / _e ) = ( ( ! ` N ) x. ( 1 / _e ) ) ) |
85 |
6 84
|
syl |
|- ( N e. NN -> ( ( ! ` N ) / _e ) = ( ( ! ` N ) x. ( 1 / _e ) ) ) |
86 |
|
df-e |
|- _e = ( exp ` 1 ) |
87 |
86
|
oveq2i |
|- ( 1 / _e ) = ( 1 / ( exp ` 1 ) ) |
88 |
|
efneg |
|- ( 1 e. CC -> ( exp ` -u 1 ) = ( 1 / ( exp ` 1 ) ) ) |
89 |
31 88
|
ax-mp |
|- ( exp ` -u 1 ) = ( 1 / ( exp ` 1 ) ) |
90 |
|
efval |
|- ( -u 1 e. CC -> ( exp ` -u 1 ) = sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
91 |
29 90
|
ax-mp |
|- ( exp ` -u 1 ) = sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) |
92 |
87 89 91
|
3eqtr2i |
|- ( 1 / _e ) = sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) |
93 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
94 |
42
|
adantl |
|- ( ( N e. NN /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
95 |
62
|
adantl |
|- ( ( N e. NN /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
96 |
|
0nn0 |
|- 0 e. NN0 |
97 |
26
|
eftlcvg |
|- ( ( -u 1 e. CC /\ 0 e. NN0 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
98 |
29 96 97
|
mp2an |
|- seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> |
99 |
98
|
a1i |
|- ( N e. NN -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
100 |
93 60 39 94 95 99
|
isumsplit |
|- ( N e. NN -> sum_ k e. NN0 ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
101 |
92 100
|
syl5eq |
|- ( N e. NN -> ( 1 / _e ) = ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
102 |
101
|
oveq2d |
|- ( N e. NN -> ( ( ! ` N ) x. ( 1 / _e ) ) = ( ( ! ` N ) x. ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
103 |
|
fzfid |
|- ( N e. NN -> ( 0 ... ( ( N + 1 ) - 1 ) ) e. Fin ) |
104 |
|
elfznn0 |
|- ( k e. ( 0 ... ( ( N + 1 ) - 1 ) ) -> k e. NN0 ) |
105 |
104
|
adantl |
|- ( ( N e. NN /\ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) -> k e. NN0 ) |
106 |
29 105 61
|
sylancr |
|- ( ( N e. NN /\ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
107 |
103 106
|
fsumcl |
|- ( N e. NN -> sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
108 |
6 107 66
|
adddid |
|- ( N e. NN -> ( ( ! ` N ) x. ( sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
109 |
85 102 108
|
3eqtrd |
|- ( N e. NN -> ( ( ! ` N ) / _e ) = ( ( ( ! ` N ) x. sum_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
110 |
82 109
|
eqtr4d |
|- ( N e. NN -> ( ( S ` N ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ! ` N ) / _e ) ) |
111 |
6 66
|
mulcld |
|- ( N e. NN -> ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) |
112 |
13 17 111
|
subaddd |
|- ( N e. NN -> ( ( ( ( ! ` N ) / _e ) - ( S ` N ) ) = ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( ( S ` N ) + ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ! ` N ) / _e ) ) ) |
113 |
110 112
|
mpbird |
|- ( N e. NN -> ( ( ( ! ` N ) / _e ) - ( S ` N ) ) = ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
114 |
113
|
fveq2d |
|- ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) = ( abs ` ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
115 |
6 66
|
absmuld |
|- ( N e. NN -> ( abs ` ( ( ! ` N ) x. sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( abs ` ( ! ` N ) ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
116 |
5
|
nnnn0d |
|- ( N e. NN -> ( ! ` N ) e. NN0 ) |
117 |
116
|
nn0ge0d |
|- ( N e. NN -> 0 <_ ( ! ` N ) ) |
118 |
68 117
|
absidd |
|- ( N e. NN -> ( abs ` ( ! ` N ) ) = ( ! ` N ) ) |
119 |
118
|
oveq1d |
|- ( N e. NN -> ( ( abs ` ( ! ` N ) ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
120 |
114 115 119
|
3eqtrd |
|- ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) = ( ( ! ` N ) x. ( abs ` sum_ k e. ( ZZ>= ` ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
121 |
|
facp1 |
|- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
122 |
3 121
|
syl |
|- ( N e. NN -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
123 |
122
|
oveq1d |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 1 ) ) ) |
124 |
20
|
nncnd |
|- ( N e. NN -> ( N + 1 ) e. CC ) |
125 |
6 124 124
|
mulassd |
|- ( N e. NN -> ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 1 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) |
126 |
123 125
|
eqtr2d |
|- ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) |
127 |
126
|
oveq2d |
|- ( N e. NN -> ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) = ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) |
128 |
21
|
nncnd |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) e. CC ) |
129 |
23
|
nncnd |
|- ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) e. CC ) |
130 |
23
|
nnne0d |
|- ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) =/= 0 ) |
131 |
5
|
nnne0d |
|- ( N e. NN -> ( ! ` N ) =/= 0 ) |
132 |
128 129 6 130 131
|
divcan5d |
|- ( N e. NN -> ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) = ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) ) |
133 |
54
|
nncnd |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) e. CC ) |
134 |
54
|
nnne0d |
|- ( N e. NN -> ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) =/= 0 ) |
135 |
6 128 133 134
|
divassd |
|- ( N e. NN -> ( ( ( ! ` N ) x. ( ( N + 1 ) + 1 ) ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) = ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) |
136 |
127 132 135
|
3eqtr3d |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( ! ` N ) x. ( ( ( N + 1 ) + 1 ) / ( ( ! ` ( N + 1 ) ) x. ( N + 1 ) ) ) ) ) |
137 |
72 120 136
|
3brtr4d |
|- ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) <_ ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) ) |
138 |
|
nnmulcl |
|- ( ( ( ( N + 1 ) + 1 ) e. NN /\ N e. NN ) -> ( ( ( N + 1 ) + 1 ) x. N ) e. NN ) |
139 |
21 138
|
mpancom |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) e. NN ) |
140 |
139
|
nnred |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) e. RR ) |
141 |
140
|
ltp1d |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) < ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) ) |
142 |
129
|
mulid2d |
|- ( N e. NN -> ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( N + 1 ) x. ( N + 1 ) ) ) |
143 |
31
|
a1i |
|- ( N e. NN -> 1 e. CC ) |
144 |
75 143 124
|
adddird |
|- ( N e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) = ( ( N x. ( N + 1 ) ) + ( 1 x. ( N + 1 ) ) ) ) |
145 |
75 124
|
mulcomd |
|- ( N e. NN -> ( N x. ( N + 1 ) ) = ( ( N + 1 ) x. N ) ) |
146 |
124
|
mulid2d |
|- ( N e. NN -> ( 1 x. ( N + 1 ) ) = ( N + 1 ) ) |
147 |
145 146
|
oveq12d |
|- ( N e. NN -> ( ( N x. ( N + 1 ) ) + ( 1 x. ( N + 1 ) ) ) = ( ( ( N + 1 ) x. N ) + ( N + 1 ) ) ) |
148 |
124 143 75
|
adddird |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) = ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) ) |
149 |
148
|
oveq1d |
|- ( N e. NN -> ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) = ( ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) + 1 ) ) |
150 |
75
|
mulid2d |
|- ( N e. NN -> ( 1 x. N ) = N ) |
151 |
150
|
oveq2d |
|- ( N e. NN -> ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) = ( ( ( N + 1 ) x. N ) + N ) ) |
152 |
151
|
oveq1d |
|- ( N e. NN -> ( ( ( ( N + 1 ) x. N ) + ( 1 x. N ) ) + 1 ) = ( ( ( ( N + 1 ) x. N ) + N ) + 1 ) ) |
153 |
124 75
|
mulcld |
|- ( N e. NN -> ( ( N + 1 ) x. N ) e. CC ) |
154 |
153 75 143
|
addassd |
|- ( N e. NN -> ( ( ( ( N + 1 ) x. N ) + N ) + 1 ) = ( ( ( N + 1 ) x. N ) + ( N + 1 ) ) ) |
155 |
149 152 154
|
3eqtrd |
|- ( N e. NN -> ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) = ( ( ( N + 1 ) x. N ) + ( N + 1 ) ) ) |
156 |
147 155
|
eqtr4d |
|- ( N e. NN -> ( ( N x. ( N + 1 ) ) + ( 1 x. ( N + 1 ) ) ) = ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) ) |
157 |
142 144 156
|
3eqtrd |
|- ( N e. NN -> ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) = ( ( ( ( N + 1 ) + 1 ) x. N ) + 1 ) ) |
158 |
141 157
|
breqtrrd |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) x. N ) < ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) ) |
159 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
160 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
161 |
159 160
|
jca |
|- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
162 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
163 |
|
nnre |
|- ( ( ( N + 1 ) x. ( N + 1 ) ) e. NN -> ( ( N + 1 ) x. ( N + 1 ) ) e. RR ) |
164 |
|
nngt0 |
|- ( ( ( N + 1 ) x. ( N + 1 ) ) e. NN -> 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) |
165 |
163 164
|
jca |
|- ( ( ( N + 1 ) x. ( N + 1 ) ) e. NN -> ( ( ( N + 1 ) x. ( N + 1 ) ) e. RR /\ 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) ) |
166 |
23 165
|
syl |
|- ( N e. NN -> ( ( ( N + 1 ) x. ( N + 1 ) ) e. RR /\ 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) ) |
167 |
|
lt2mul2div |
|- ( ( ( ( ( N + 1 ) + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) /\ ( 1 e. RR /\ ( ( ( N + 1 ) x. ( N + 1 ) ) e. RR /\ 0 < ( ( N + 1 ) x. ( N + 1 ) ) ) ) ) -> ( ( ( ( N + 1 ) + 1 ) x. N ) < ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) <-> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) < ( 1 / N ) ) ) |
168 |
22 161 162 166 167
|
syl22anc |
|- ( N e. NN -> ( ( ( ( N + 1 ) + 1 ) x. N ) < ( 1 x. ( ( N + 1 ) x. ( N + 1 ) ) ) <-> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) < ( 1 / N ) ) ) |
169 |
158 168
|
mpbid |
|- ( N e. NN -> ( ( ( N + 1 ) + 1 ) / ( ( N + 1 ) x. ( N + 1 ) ) ) < ( 1 / N ) ) |
170 |
19 24 25 137 169
|
lelttrd |
|- ( N e. NN -> ( abs ` ( ( ( ! ` N ) / _e ) - ( S ` N ) ) ) < ( 1 / N ) ) |