| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d |  |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) | 
						
							| 2 |  | subfac.n |  |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = 0 -> ( S ` x ) = ( S ` 0 ) ) | 
						
							| 4 | 1 2 | subfac0 |  |-  ( S ` 0 ) = 1 | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( x = 0 -> ( S ` x ) = 1 ) | 
						
							| 6 |  | fveq2 |  |-  ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) | 
						
							| 7 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 8 | 6 7 | eqtrdi |  |-  ( x = 0 -> ( ! ` x ) = 1 ) | 
						
							| 9 |  | oveq2 |  |-  ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) | 
						
							| 10 | 9 | sumeq1d |  |-  ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 11 | 8 10 | oveq12d |  |-  ( x = 0 -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 12 | 5 11 | eqeq12d |  |-  ( x = 0 -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 13 |  | fv0p1e1 |  |-  ( x = 0 -> ( S ` ( x + 1 ) ) = ( S ` 1 ) ) | 
						
							| 14 | 1 2 | subfac1 |  |-  ( S ` 1 ) = 0 | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( x = 0 -> ( S ` ( x + 1 ) ) = 0 ) | 
						
							| 16 |  | fv0p1e1 |  |-  ( x = 0 -> ( ! ` ( x + 1 ) ) = ( ! ` 1 ) ) | 
						
							| 17 |  | fac1 |  |-  ( ! ` 1 ) = 1 | 
						
							| 18 | 16 17 | eqtrdi |  |-  ( x = 0 -> ( ! ` ( x + 1 ) ) = 1 ) | 
						
							| 19 |  | oveq1 |  |-  ( x = 0 -> ( x + 1 ) = ( 0 + 1 ) ) | 
						
							| 20 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( x = 0 -> ( x + 1 ) = 1 ) | 
						
							| 22 | 21 | oveq2d |  |-  ( x = 0 -> ( 0 ... ( x + 1 ) ) = ( 0 ... 1 ) ) | 
						
							| 23 | 22 | sumeq1d |  |-  ( x = 0 -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 24 | 18 23 | oveq12d |  |-  ( x = 0 -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 25 | 15 24 | eqeq12d |  |-  ( x = 0 -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 26 | 12 25 | anbi12d |  |-  ( x = 0 -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 27 |  | fveq2 |  |-  ( x = m -> ( S ` x ) = ( S ` m ) ) | 
						
							| 28 |  | fveq2 |  |-  ( x = m -> ( ! ` x ) = ( ! ` m ) ) | 
						
							| 29 |  | oveq2 |  |-  ( x = m -> ( 0 ... x ) = ( 0 ... m ) ) | 
						
							| 30 | 29 | sumeq1d |  |-  ( x = m -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 31 | 28 30 | oveq12d |  |-  ( x = m -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 32 | 27 31 | eqeq12d |  |-  ( x = m -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 33 |  | fvoveq1 |  |-  ( x = m -> ( S ` ( x + 1 ) ) = ( S ` ( m + 1 ) ) ) | 
						
							| 34 |  | fvoveq1 |  |-  ( x = m -> ( ! ` ( x + 1 ) ) = ( ! ` ( m + 1 ) ) ) | 
						
							| 35 |  | oveq1 |  |-  ( x = m -> ( x + 1 ) = ( m + 1 ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( x = m -> ( 0 ... ( x + 1 ) ) = ( 0 ... ( m + 1 ) ) ) | 
						
							| 37 | 36 | sumeq1d |  |-  ( x = m -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 38 | 34 37 | oveq12d |  |-  ( x = m -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 39 | 33 38 | eqeq12d |  |-  ( x = m -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 40 | 32 39 | anbi12d |  |-  ( x = m -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 41 |  | fveq2 |  |-  ( x = ( m + 1 ) -> ( S ` x ) = ( S ` ( m + 1 ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( x = ( m + 1 ) -> ( ! ` x ) = ( ! ` ( m + 1 ) ) ) | 
						
							| 43 |  | oveq2 |  |-  ( x = ( m + 1 ) -> ( 0 ... x ) = ( 0 ... ( m + 1 ) ) ) | 
						
							| 44 | 43 | sumeq1d |  |-  ( x = ( m + 1 ) -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 45 | 42 44 | oveq12d |  |-  ( x = ( m + 1 ) -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 46 | 41 45 | eqeq12d |  |-  ( x = ( m + 1 ) -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 47 |  | fvoveq1 |  |-  ( x = ( m + 1 ) -> ( S ` ( x + 1 ) ) = ( S ` ( ( m + 1 ) + 1 ) ) ) | 
						
							| 48 |  | fvoveq1 |  |-  ( x = ( m + 1 ) -> ( ! ` ( x + 1 ) ) = ( ! ` ( ( m + 1 ) + 1 ) ) ) | 
						
							| 49 |  | oveq1 |  |-  ( x = ( m + 1 ) -> ( x + 1 ) = ( ( m + 1 ) + 1 ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( x = ( m + 1 ) -> ( 0 ... ( x + 1 ) ) = ( 0 ... ( ( m + 1 ) + 1 ) ) ) | 
						
							| 51 | 50 | sumeq1d |  |-  ( x = ( m + 1 ) -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 52 | 48 51 | oveq12d |  |-  ( x = ( m + 1 ) -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 53 | 47 52 | eqeq12d |  |-  ( x = ( m + 1 ) -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 54 | 46 53 | anbi12d |  |-  ( x = ( m + 1 ) -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 55 |  | fveq2 |  |-  ( x = N -> ( S ` x ) = ( S ` N ) ) | 
						
							| 56 |  | fveq2 |  |-  ( x = N -> ( ! ` x ) = ( ! ` N ) ) | 
						
							| 57 |  | oveq2 |  |-  ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) | 
						
							| 58 | 57 | sumeq1d |  |-  ( x = N -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 59 | 56 58 | oveq12d |  |-  ( x = N -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 60 | 55 59 | eqeq12d |  |-  ( x = N -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 61 |  | fvoveq1 |  |-  ( x = N -> ( S ` ( x + 1 ) ) = ( S ` ( N + 1 ) ) ) | 
						
							| 62 |  | fvoveq1 |  |-  ( x = N -> ( ! ` ( x + 1 ) ) = ( ! ` ( N + 1 ) ) ) | 
						
							| 63 |  | oveq1 |  |-  ( x = N -> ( x + 1 ) = ( N + 1 ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( x = N -> ( 0 ... ( x + 1 ) ) = ( 0 ... ( N + 1 ) ) ) | 
						
							| 65 | 64 | sumeq1d |  |-  ( x = N -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 66 | 62 65 | oveq12d |  |-  ( x = N -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 67 | 61 66 | eqeq12d |  |-  ( x = N -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 68 | 60 67 | anbi12d |  |-  ( x = N -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 69 |  | 0z |  |-  0 e. ZZ | 
						
							| 70 |  | ax-1cn |  |-  1 e. CC | 
						
							| 71 |  | oveq2 |  |-  ( k = 0 -> ( -u 1 ^ k ) = ( -u 1 ^ 0 ) ) | 
						
							| 72 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 73 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 74 | 72 73 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 75 | 71 74 | eqtrdi |  |-  ( k = 0 -> ( -u 1 ^ k ) = 1 ) | 
						
							| 76 |  | fveq2 |  |-  ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) | 
						
							| 77 | 76 7 | eqtrdi |  |-  ( k = 0 -> ( ! ` k ) = 1 ) | 
						
							| 78 | 75 77 | oveq12d |  |-  ( k = 0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( 1 / 1 ) ) | 
						
							| 79 | 70 | div1i |  |-  ( 1 / 1 ) = 1 | 
						
							| 80 | 78 79 | eqtrdi |  |-  ( k = 0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) | 
						
							| 81 | 80 | fsum1 |  |-  ( ( 0 e. ZZ /\ 1 e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) | 
						
							| 82 | 69 70 81 | mp2an |  |-  sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 | 
						
							| 83 | 82 | oveq2i |  |-  ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. 1 ) | 
						
							| 84 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 85 | 83 84 | eqtr2i |  |-  1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 86 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 87 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 88 |  | oveq2 |  |-  ( k = 1 -> ( -u 1 ^ k ) = ( -u 1 ^ 1 ) ) | 
						
							| 89 |  | exp1 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) | 
						
							| 90 | 72 89 | ax-mp |  |-  ( -u 1 ^ 1 ) = -u 1 | 
						
							| 91 | 88 90 | eqtrdi |  |-  ( k = 1 -> ( -u 1 ^ k ) = -u 1 ) | 
						
							| 92 |  | fveq2 |  |-  ( k = 1 -> ( ! ` k ) = ( ! ` 1 ) ) | 
						
							| 93 | 92 17 | eqtrdi |  |-  ( k = 1 -> ( ! ` k ) = 1 ) | 
						
							| 94 | 91 93 | oveq12d |  |-  ( k = 1 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( -u 1 / 1 ) ) | 
						
							| 95 | 72 | div1i |  |-  ( -u 1 / 1 ) = -u 1 | 
						
							| 96 | 94 95 | eqtrdi |  |-  ( k = 1 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = -u 1 ) | 
						
							| 97 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 98 |  | reexpcl |  |-  ( ( -u 1 e. RR /\ k e. NN0 ) -> ( -u 1 ^ k ) e. RR ) | 
						
							| 99 | 97 98 | mpan |  |-  ( k e. NN0 -> ( -u 1 ^ k ) e. RR ) | 
						
							| 100 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 101 | 99 100 | nndivred |  |-  ( k e. NN0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. RR ) | 
						
							| 102 | 101 | recnd |  |-  ( k e. NN0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 103 | 102 | adantl |  |-  ( ( T. /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 104 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 105 | 104 82 | pm3.2i |  |-  ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) | 
						
							| 106 | 105 | a1i |  |-  ( T. -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) ) | 
						
							| 107 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 108 | 107 | a1i |  |-  ( T. -> ( 1 + -u 1 ) = 0 ) | 
						
							| 109 | 86 87 96 103 106 108 | fsump1i |  |-  ( T. -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 0 ) ) | 
						
							| 110 | 109 | mptru |  |-  ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 0 ) | 
						
							| 111 | 110 | simpri |  |-  sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 0 | 
						
							| 112 | 111 | oveq2i |  |-  ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. 0 ) | 
						
							| 113 | 70 | mul01i |  |-  ( 1 x. 0 ) = 0 | 
						
							| 114 | 112 113 | eqtr2i |  |-  0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 115 | 85 114 | pm3.2i |  |-  ( 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 116 |  | simpr |  |-  ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 117 | 116 | a1i |  |-  ( m e. NN0 -> ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 118 |  | oveq12 |  |-  ( ( ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( S ` ( m + 1 ) ) + ( S ` m ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 119 | 118 | ancoms |  |-  ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( S ` ( m + 1 ) ) + ( S ` m ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 120 | 119 | oveq2d |  |-  ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 121 |  | nn0p1nn |  |-  ( m e. NN0 -> ( m + 1 ) e. NN ) | 
						
							| 122 | 1 2 | subfacp1 |  |-  ( ( m + 1 ) e. NN -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) ) ) | 
						
							| 123 | 121 122 | syl |  |-  ( m e. NN0 -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) ) ) | 
						
							| 124 |  | nn0cn |  |-  ( m e. NN0 -> m e. CC ) | 
						
							| 125 |  | pncan |  |-  ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) | 
						
							| 126 | 124 70 125 | sylancl |  |-  ( m e. NN0 -> ( ( m + 1 ) - 1 ) = m ) | 
						
							| 127 | 126 | fveq2d |  |-  ( m e. NN0 -> ( S ` ( ( m + 1 ) - 1 ) ) = ( S ` m ) ) | 
						
							| 128 | 127 | oveq2d |  |-  ( m e. NN0 -> ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) = ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) | 
						
							| 129 | 128 | oveq2d |  |-  ( m e. NN0 -> ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) ) | 
						
							| 130 | 123 129 | eqtrd |  |-  ( m e. NN0 -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) ) | 
						
							| 131 |  | peano2nn0 |  |-  ( m e. NN0 -> ( m + 1 ) e. NN0 ) | 
						
							| 132 |  | peano2nn0 |  |-  ( ( m + 1 ) e. NN0 -> ( ( m + 1 ) + 1 ) e. NN0 ) | 
						
							| 133 | 131 132 | syl |  |-  ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. NN0 ) | 
						
							| 134 |  | faccl |  |-  ( ( ( m + 1 ) + 1 ) e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) e. NN ) | 
						
							| 135 | 133 134 | syl |  |-  ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) e. NN ) | 
						
							| 136 | 135 | nncnd |  |-  ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) e. CC ) | 
						
							| 137 |  | fzfid |  |-  ( m e. NN0 -> ( 0 ... ( m + 1 ) ) e. Fin ) | 
						
							| 138 |  | elfznn0 |  |-  ( k e. ( 0 ... ( m + 1 ) ) -> k e. NN0 ) | 
						
							| 139 | 138 | adantl |  |-  ( ( m e. NN0 /\ k e. ( 0 ... ( m + 1 ) ) ) -> k e. NN0 ) | 
						
							| 140 | 139 102 | syl |  |-  ( ( m e. NN0 /\ k e. ( 0 ... ( m + 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 141 | 137 140 | fsumcl |  |-  ( m e. NN0 -> sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 142 |  | expcl |  |-  ( ( -u 1 e. CC /\ ( ( m + 1 ) + 1 ) e. NN0 ) -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) e. CC ) | 
						
							| 143 | 72 133 142 | sylancr |  |-  ( m e. NN0 -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) e. CC ) | 
						
							| 144 | 135 | nnne0d |  |-  ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) =/= 0 ) | 
						
							| 145 | 143 136 144 | divcld |  |-  ( m e. NN0 -> ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) e. CC ) | 
						
							| 146 | 136 141 145 | adddid |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) = ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) ) | 
						
							| 147 |  | id |  |-  ( m e. NN0 -> m e. NN0 ) | 
						
							| 148 | 147 86 | eleqtrdi |  |-  ( m e. NN0 -> m e. ( ZZ>= ` 0 ) ) | 
						
							| 149 |  | oveq2 |  |-  ( k = ( m + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( m + 1 ) ) ) | 
						
							| 150 |  | fveq2 |  |-  ( k = ( m + 1 ) -> ( ! ` k ) = ( ! ` ( m + 1 ) ) ) | 
						
							| 151 | 149 150 | oveq12d |  |-  ( k = ( m + 1 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) | 
						
							| 152 | 148 140 151 | fsump1 |  |-  ( m e. NN0 -> sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) | 
						
							| 154 |  | fzfid |  |-  ( m e. NN0 -> ( 0 ... m ) e. Fin ) | 
						
							| 155 |  | elfznn0 |  |-  ( k e. ( 0 ... m ) -> k e. NN0 ) | 
						
							| 156 | 155 | adantl |  |-  ( ( m e. NN0 /\ k e. ( 0 ... m ) ) -> k e. NN0 ) | 
						
							| 157 | 156 102 | syl |  |-  ( ( m e. NN0 /\ k e. ( 0 ... m ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 158 | 154 157 | fsumcl |  |-  ( m e. NN0 -> sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 159 |  | expcl |  |-  ( ( -u 1 e. CC /\ ( m + 1 ) e. NN0 ) -> ( -u 1 ^ ( m + 1 ) ) e. CC ) | 
						
							| 160 | 72 131 159 | sylancr |  |-  ( m e. NN0 -> ( -u 1 ^ ( m + 1 ) ) e. CC ) | 
						
							| 161 |  | faccl |  |-  ( ( m + 1 ) e. NN0 -> ( ! ` ( m + 1 ) ) e. NN ) | 
						
							| 162 | 131 161 | syl |  |-  ( m e. NN0 -> ( ! ` ( m + 1 ) ) e. NN ) | 
						
							| 163 | 162 | nncnd |  |-  ( m e. NN0 -> ( ! ` ( m + 1 ) ) e. CC ) | 
						
							| 164 | 162 | nnne0d |  |-  ( m e. NN0 -> ( ! ` ( m + 1 ) ) =/= 0 ) | 
						
							| 165 | 160 163 164 | divcld |  |-  ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) e. CC ) | 
						
							| 166 | 136 158 165 | adddid |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) | 
						
							| 167 |  | facp1 |  |-  ( ( m + 1 ) e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) | 
						
							| 168 | 131 167 | syl |  |-  ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) | 
						
							| 169 |  | facp1 |  |-  ( m e. NN0 -> ( ! ` ( m + 1 ) ) = ( ( ! ` m ) x. ( m + 1 ) ) ) | 
						
							| 170 |  | faccl |  |-  ( m e. NN0 -> ( ! ` m ) e. NN ) | 
						
							| 171 | 170 | nncnd |  |-  ( m e. NN0 -> ( ! ` m ) e. CC ) | 
						
							| 172 | 121 | nncnd |  |-  ( m e. NN0 -> ( m + 1 ) e. CC ) | 
						
							| 173 | 171 172 | mulcomd |  |-  ( m e. NN0 -> ( ( ! ` m ) x. ( m + 1 ) ) = ( ( m + 1 ) x. ( ! ` m ) ) ) | 
						
							| 174 | 169 173 | eqtrd |  |-  ( m e. NN0 -> ( ! ` ( m + 1 ) ) = ( ( m + 1 ) x. ( ! ` m ) ) ) | 
						
							| 175 | 174 | oveq1d |  |-  ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) = ( ( ( m + 1 ) x. ( ! ` m ) ) x. ( ( m + 1 ) + 1 ) ) ) | 
						
							| 176 | 133 | nn0cnd |  |-  ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. CC ) | 
						
							| 177 | 172 171 176 | mulassd |  |-  ( m e. NN0 -> ( ( ( m + 1 ) x. ( ! ` m ) ) x. ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) ) | 
						
							| 178 | 168 175 177 | 3eqtrd |  |-  ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) ) | 
						
							| 179 | 178 | oveq1d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 180 | 136 160 163 164 | div12d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) | 
						
							| 181 | 168 | oveq1d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) | 
						
							| 182 | 176 163 164 | divcan3d |  |-  ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) = ( ( m + 1 ) + 1 ) ) | 
						
							| 183 | 181 182 | eqtrd |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) = ( ( m + 1 ) + 1 ) ) | 
						
							| 184 | 183 | oveq2d |  |-  ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) | 
						
							| 185 | 180 184 | eqtrd |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) | 
						
							| 186 | 179 185 | oveq12d |  |-  ( m e. NN0 -> ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) ) | 
						
							| 187 | 153 166 186 | 3eqtrd |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) ) | 
						
							| 188 | 143 136 144 | divcan2d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) = ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) | 
						
							| 189 | 187 188 | oveq12d |  |-  ( m e. NN0 -> ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) = ( ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) ) | 
						
							| 190 | 171 176 | mulcld |  |-  ( m e. NN0 -> ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) e. CC ) | 
						
							| 191 | 172 190 158 | mulassd |  |-  ( m e. NN0 -> ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 192 | 72 | a1i |  |-  ( m e. NN0 -> -u 1 e. CC ) | 
						
							| 193 | 160 176 192 | adddid |  |-  ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ( m + 1 ) + 1 ) + -u 1 ) ) = ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) ) | 
						
							| 194 |  | negsub |  |-  ( ( ( ( m + 1 ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( m + 1 ) + 1 ) + -u 1 ) = ( ( ( m + 1 ) + 1 ) - 1 ) ) | 
						
							| 195 | 176 70 194 | sylancl |  |-  ( m e. NN0 -> ( ( ( m + 1 ) + 1 ) + -u 1 ) = ( ( ( m + 1 ) + 1 ) - 1 ) ) | 
						
							| 196 |  | pncan |  |-  ( ( ( m + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( m + 1 ) + 1 ) - 1 ) = ( m + 1 ) ) | 
						
							| 197 | 172 70 196 | sylancl |  |-  ( m e. NN0 -> ( ( ( m + 1 ) + 1 ) - 1 ) = ( m + 1 ) ) | 
						
							| 198 | 195 197 | eqtrd |  |-  ( m e. NN0 -> ( ( ( m + 1 ) + 1 ) + -u 1 ) = ( m + 1 ) ) | 
						
							| 199 | 198 | oveq2d |  |-  ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ( m + 1 ) + 1 ) + -u 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( m + 1 ) ) ) | 
						
							| 200 | 193 199 | eqtr3d |  |-  ( m e. NN0 -> ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( m + 1 ) ) ) | 
						
							| 201 |  | expp1 |  |-  ( ( -u 1 e. CC /\ ( m + 1 ) e. NN0 ) -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) | 
						
							| 202 | 72 131 201 | sylancr |  |-  ( m e. NN0 -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) | 
						
							| 203 | 202 | oveq2d |  |-  ( m e. NN0 -> ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) ) | 
						
							| 204 | 172 160 | mulcomd |  |-  ( m e. NN0 -> ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( m + 1 ) ) ) | 
						
							| 205 | 200 203 204 | 3eqtr4d |  |-  ( m e. NN0 -> ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) ) | 
						
							| 206 | 191 205 | oveq12d |  |-  ( m e. NN0 -> ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) ) = ( ( ( m + 1 ) x. ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) ) ) | 
						
							| 207 | 172 190 | mulcld |  |-  ( m e. NN0 -> ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) e. CC ) | 
						
							| 208 | 207 158 | mulcld |  |-  ( m e. NN0 -> ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) | 
						
							| 209 | 160 176 | mulcld |  |-  ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) e. CC ) | 
						
							| 210 | 208 209 143 | addassd |  |-  ( m e. NN0 -> ( ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) ) ) | 
						
							| 211 | 190 158 | mulcld |  |-  ( m e. NN0 -> ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) | 
						
							| 212 | 172 211 160 | adddid |  |-  ( m e. NN0 -> ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) = ( ( ( m + 1 ) x. ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) ) ) | 
						
							| 213 | 206 210 212 | 3eqtr4d |  |-  ( m e. NN0 -> ( ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) ) | 
						
							| 214 | 146 189 213 | 3eqtrd |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) = ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) ) | 
						
							| 215 | 131 86 | eleqtrdi |  |-  ( m e. NN0 -> ( m + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 216 |  | elfznn0 |  |-  ( k e. ( 0 ... ( ( m + 1 ) + 1 ) ) -> k e. NN0 ) | 
						
							| 217 | 216 | adantl |  |-  ( ( m e. NN0 /\ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 218 | 217 102 | syl |  |-  ( ( m e. NN0 /\ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) | 
						
							| 219 |  | oveq2 |  |-  ( k = ( ( m + 1 ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) | 
						
							| 220 |  | fveq2 |  |-  ( k = ( ( m + 1 ) + 1 ) -> ( ! ` k ) = ( ! ` ( ( m + 1 ) + 1 ) ) ) | 
						
							| 221 | 219 220 | oveq12d |  |-  ( k = ( ( m + 1 ) + 1 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) | 
						
							| 222 | 215 218 221 | fsump1 |  |-  ( m e. NN0 -> sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) | 
						
							| 223 | 222 | oveq2d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) ) | 
						
							| 224 | 163 158 | mulcld |  |-  ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) | 
						
							| 225 | 171 158 | mulcld |  |-  ( m e. NN0 -> ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) | 
						
							| 226 | 224 160 225 | add32d |  |-  ( m e. NN0 -> ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) | 
						
							| 227 | 152 | oveq2d |  |-  ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( m + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) | 
						
							| 228 | 163 158 165 | adddid |  |-  ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( m + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) | 
						
							| 229 | 160 163 164 | divcan2d |  |-  ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( -u 1 ^ ( m + 1 ) ) ) | 
						
							| 230 | 229 | oveq2d |  |-  ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( m + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) | 
						
							| 231 | 227 228 230 | 3eqtrd |  |-  ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) | 
						
							| 232 | 231 | oveq1d |  |-  ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 233 | 70 | a1i |  |-  ( m e. NN0 -> 1 e. CC ) | 
						
							| 234 | 171 172 233 | adddid |  |-  ( m e. NN0 -> ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) = ( ( ( ! ` m ) x. ( m + 1 ) ) + ( ( ! ` m ) x. 1 ) ) ) | 
						
							| 235 | 169 | eqcomd |  |-  ( m e. NN0 -> ( ( ! ` m ) x. ( m + 1 ) ) = ( ! ` ( m + 1 ) ) ) | 
						
							| 236 | 171 | mulridd |  |-  ( m e. NN0 -> ( ( ! ` m ) x. 1 ) = ( ! ` m ) ) | 
						
							| 237 | 235 236 | oveq12d |  |-  ( m e. NN0 -> ( ( ( ! ` m ) x. ( m + 1 ) ) + ( ( ! ` m ) x. 1 ) ) = ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) ) | 
						
							| 238 | 234 237 | eqtrd |  |-  ( m e. NN0 -> ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) ) | 
						
							| 239 | 238 | oveq1d |  |-  ( m e. NN0 -> ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) | 
						
							| 240 | 163 171 158 | adddird |  |-  ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 241 | 239 240 | eqtrd |  |-  ( m e. NN0 -> ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 242 | 241 | oveq1d |  |-  ( m e. NN0 -> ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) = ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) | 
						
							| 243 | 226 232 242 | 3eqtr4d |  |-  ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) | 
						
							| 244 | 243 | oveq2d |  |-  ( m e. NN0 -> ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) = ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) ) | 
						
							| 245 | 214 223 244 | 3eqtr4d |  |-  ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 246 | 130 245 | eqeq12d |  |-  ( m e. NN0 -> ( ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) ) | 
						
							| 247 | 120 246 | imbitrrid |  |-  ( m e. NN0 -> ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 248 | 117 247 | jcad |  |-  ( m e. NN0 -> ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) | 
						
							| 249 | 26 40 54 68 115 248 | nn0ind |  |-  ( N e. NN0 -> ( ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) | 
						
							| 250 | 249 | simpld |  |-  ( N e. NN0 -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |