Step |
Hyp |
Ref |
Expression |
1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
2 |
|
fncnvima2 |
|- ( F Fn dom F -> ( `' F " ( Y X. Z ) ) = { x e. dom F | ( F ` x ) e. ( Y X. Z ) } ) |
3 |
1 2
|
sylbi |
|- ( Fun F -> ( `' F " ( Y X. Z ) ) = { x e. dom F | ( F ` x ) e. ( Y X. Z ) } ) |
4 |
3
|
adantr |
|- ( ( Fun F /\ ran F C_ ( _V X. _V ) ) -> ( `' F " ( Y X. Z ) ) = { x e. dom F | ( F ` x ) e. ( Y X. Z ) } ) |
5 |
|
elxp6 |
|- ( ( F ` x ) e. ( Y X. Z ) <-> ( ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. /\ ( ( 1st ` ( F ` x ) ) e. Y /\ ( 2nd ` ( F ` x ) ) e. Z ) ) ) |
6 |
|
fvco |
|- ( ( Fun F /\ x e. dom F ) -> ( ( 1st o. F ) ` x ) = ( 1st ` ( F ` x ) ) ) |
7 |
|
fvco |
|- ( ( Fun F /\ x e. dom F ) -> ( ( 2nd o. F ) ` x ) = ( 2nd ` ( F ` x ) ) ) |
8 |
6 7
|
opeq12d |
|- ( ( Fun F /\ x e. dom F ) -> <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
9 |
8
|
eqeq2d |
|- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) = <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. <-> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
10 |
6
|
eleq1d |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( 1st o. F ) ` x ) e. Y <-> ( 1st ` ( F ` x ) ) e. Y ) ) |
11 |
7
|
eleq1d |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( 2nd o. F ) ` x ) e. Z <-> ( 2nd ` ( F ` x ) ) e. Z ) ) |
12 |
10 11
|
anbi12d |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) <-> ( ( 1st ` ( F ` x ) ) e. Y /\ ( 2nd ` ( F ` x ) ) e. Z ) ) ) |
13 |
9 12
|
anbi12d |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( F ` x ) = <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. /\ ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) ) <-> ( ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. /\ ( ( 1st ` ( F ` x ) ) e. Y /\ ( 2nd ` ( F ` x ) ) e. Z ) ) ) ) |
14 |
5 13
|
bitr4id |
|- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. ( Y X. Z ) <-> ( ( F ` x ) = <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. /\ ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) ) ) ) |
15 |
14
|
adantlr |
|- ( ( ( Fun F /\ ran F C_ ( _V X. _V ) ) /\ x e. dom F ) -> ( ( F ` x ) e. ( Y X. Z ) <-> ( ( F ` x ) = <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. /\ ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) ) ) ) |
16 |
|
opfv |
|- ( ( ( Fun F /\ ran F C_ ( _V X. _V ) ) /\ x e. dom F ) -> ( F ` x ) = <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. ) |
17 |
16
|
biantrurd |
|- ( ( ( Fun F /\ ran F C_ ( _V X. _V ) ) /\ x e. dom F ) -> ( ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) <-> ( ( F ` x ) = <. ( ( 1st o. F ) ` x ) , ( ( 2nd o. F ) ` x ) >. /\ ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) ) ) ) |
18 |
|
fo1st |
|- 1st : _V -onto-> _V |
19 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
20 |
18 19
|
ax-mp |
|- Fun 1st |
21 |
|
funco |
|- ( ( Fun 1st /\ Fun F ) -> Fun ( 1st o. F ) ) |
22 |
20 21
|
mpan |
|- ( Fun F -> Fun ( 1st o. F ) ) |
23 |
22
|
adantr |
|- ( ( Fun F /\ x e. dom F ) -> Fun ( 1st o. F ) ) |
24 |
|
ssv |
|- ( F " dom F ) C_ _V |
25 |
|
fof |
|- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
26 |
|
fdm |
|- ( 1st : _V --> _V -> dom 1st = _V ) |
27 |
18 25 26
|
mp2b |
|- dom 1st = _V |
28 |
24 27
|
sseqtrri |
|- ( F " dom F ) C_ dom 1st |
29 |
|
ssid |
|- dom F C_ dom F |
30 |
|
funimass3 |
|- ( ( Fun F /\ dom F C_ dom F ) -> ( ( F " dom F ) C_ dom 1st <-> dom F C_ ( `' F " dom 1st ) ) ) |
31 |
29 30
|
mpan2 |
|- ( Fun F -> ( ( F " dom F ) C_ dom 1st <-> dom F C_ ( `' F " dom 1st ) ) ) |
32 |
28 31
|
mpbii |
|- ( Fun F -> dom F C_ ( `' F " dom 1st ) ) |
33 |
32
|
sselda |
|- ( ( Fun F /\ x e. dom F ) -> x e. ( `' F " dom 1st ) ) |
34 |
|
dmco |
|- dom ( 1st o. F ) = ( `' F " dom 1st ) |
35 |
33 34
|
eleqtrrdi |
|- ( ( Fun F /\ x e. dom F ) -> x e. dom ( 1st o. F ) ) |
36 |
|
fvimacnv |
|- ( ( Fun ( 1st o. F ) /\ x e. dom ( 1st o. F ) ) -> ( ( ( 1st o. F ) ` x ) e. Y <-> x e. ( `' ( 1st o. F ) " Y ) ) ) |
37 |
23 35 36
|
syl2anc |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( 1st o. F ) ` x ) e. Y <-> x e. ( `' ( 1st o. F ) " Y ) ) ) |
38 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
39 |
|
fofun |
|- ( 2nd : _V -onto-> _V -> Fun 2nd ) |
40 |
38 39
|
ax-mp |
|- Fun 2nd |
41 |
|
funco |
|- ( ( Fun 2nd /\ Fun F ) -> Fun ( 2nd o. F ) ) |
42 |
40 41
|
mpan |
|- ( Fun F -> Fun ( 2nd o. F ) ) |
43 |
42
|
adantr |
|- ( ( Fun F /\ x e. dom F ) -> Fun ( 2nd o. F ) ) |
44 |
|
fof |
|- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
45 |
|
fdm |
|- ( 2nd : _V --> _V -> dom 2nd = _V ) |
46 |
38 44 45
|
mp2b |
|- dom 2nd = _V |
47 |
24 46
|
sseqtrri |
|- ( F " dom F ) C_ dom 2nd |
48 |
|
funimass3 |
|- ( ( Fun F /\ dom F C_ dom F ) -> ( ( F " dom F ) C_ dom 2nd <-> dom F C_ ( `' F " dom 2nd ) ) ) |
49 |
29 48
|
mpan2 |
|- ( Fun F -> ( ( F " dom F ) C_ dom 2nd <-> dom F C_ ( `' F " dom 2nd ) ) ) |
50 |
47 49
|
mpbii |
|- ( Fun F -> dom F C_ ( `' F " dom 2nd ) ) |
51 |
50
|
sselda |
|- ( ( Fun F /\ x e. dom F ) -> x e. ( `' F " dom 2nd ) ) |
52 |
|
dmco |
|- dom ( 2nd o. F ) = ( `' F " dom 2nd ) |
53 |
51 52
|
eleqtrrdi |
|- ( ( Fun F /\ x e. dom F ) -> x e. dom ( 2nd o. F ) ) |
54 |
|
fvimacnv |
|- ( ( Fun ( 2nd o. F ) /\ x e. dom ( 2nd o. F ) ) -> ( ( ( 2nd o. F ) ` x ) e. Z <-> x e. ( `' ( 2nd o. F ) " Z ) ) ) |
55 |
43 53 54
|
syl2anc |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( 2nd o. F ) ` x ) e. Z <-> x e. ( `' ( 2nd o. F ) " Z ) ) ) |
56 |
37 55
|
anbi12d |
|- ( ( Fun F /\ x e. dom F ) -> ( ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) <-> ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) ) ) |
57 |
56
|
adantlr |
|- ( ( ( Fun F /\ ran F C_ ( _V X. _V ) ) /\ x e. dom F ) -> ( ( ( ( 1st o. F ) ` x ) e. Y /\ ( ( 2nd o. F ) ` x ) e. Z ) <-> ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) ) ) |
58 |
15 17 57
|
3bitr2d |
|- ( ( ( Fun F /\ ran F C_ ( _V X. _V ) ) /\ x e. dom F ) -> ( ( F ` x ) e. ( Y X. Z ) <-> ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) ) ) |
59 |
58
|
rabbidva |
|- ( ( Fun F /\ ran F C_ ( _V X. _V ) ) -> { x e. dom F | ( F ` x ) e. ( Y X. Z ) } = { x e. dom F | ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) } ) |
60 |
4 59
|
eqtrd |
|- ( ( Fun F /\ ran F C_ ( _V X. _V ) ) -> ( `' F " ( Y X. Z ) ) = { x e. dom F | ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) } ) |
61 |
|
dfin5 |
|- ( dom F i^i ( `' ( 1st o. F ) " Y ) ) = { x e. dom F | x e. ( `' ( 1st o. F ) " Y ) } |
62 |
|
dfin5 |
|- ( dom F i^i ( `' ( 2nd o. F ) " Z ) ) = { x e. dom F | x e. ( `' ( 2nd o. F ) " Z ) } |
63 |
61 62
|
ineq12i |
|- ( ( dom F i^i ( `' ( 1st o. F ) " Y ) ) i^i ( dom F i^i ( `' ( 2nd o. F ) " Z ) ) ) = ( { x e. dom F | x e. ( `' ( 1st o. F ) " Y ) } i^i { x e. dom F | x e. ( `' ( 2nd o. F ) " Z ) } ) |
64 |
|
cnvimass |
|- ( `' ( 1st o. F ) " Y ) C_ dom ( 1st o. F ) |
65 |
|
dmcoss |
|- dom ( 1st o. F ) C_ dom F |
66 |
64 65
|
sstri |
|- ( `' ( 1st o. F ) " Y ) C_ dom F |
67 |
|
sseqin2 |
|- ( ( `' ( 1st o. F ) " Y ) C_ dom F <-> ( dom F i^i ( `' ( 1st o. F ) " Y ) ) = ( `' ( 1st o. F ) " Y ) ) |
68 |
66 67
|
mpbi |
|- ( dom F i^i ( `' ( 1st o. F ) " Y ) ) = ( `' ( 1st o. F ) " Y ) |
69 |
|
cnvimass |
|- ( `' ( 2nd o. F ) " Z ) C_ dom ( 2nd o. F ) |
70 |
|
dmcoss |
|- dom ( 2nd o. F ) C_ dom F |
71 |
69 70
|
sstri |
|- ( `' ( 2nd o. F ) " Z ) C_ dom F |
72 |
|
sseqin2 |
|- ( ( `' ( 2nd o. F ) " Z ) C_ dom F <-> ( dom F i^i ( `' ( 2nd o. F ) " Z ) ) = ( `' ( 2nd o. F ) " Z ) ) |
73 |
71 72
|
mpbi |
|- ( dom F i^i ( `' ( 2nd o. F ) " Z ) ) = ( `' ( 2nd o. F ) " Z ) |
74 |
68 73
|
ineq12i |
|- ( ( dom F i^i ( `' ( 1st o. F ) " Y ) ) i^i ( dom F i^i ( `' ( 2nd o. F ) " Z ) ) ) = ( ( `' ( 1st o. F ) " Y ) i^i ( `' ( 2nd o. F ) " Z ) ) |
75 |
|
inrab |
|- ( { x e. dom F | x e. ( `' ( 1st o. F ) " Y ) } i^i { x e. dom F | x e. ( `' ( 2nd o. F ) " Z ) } ) = { x e. dom F | ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) } |
76 |
63 74 75
|
3eqtr3ri |
|- { x e. dom F | ( x e. ( `' ( 1st o. F ) " Y ) /\ x e. ( `' ( 2nd o. F ) " Z ) ) } = ( ( `' ( 1st o. F ) " Y ) i^i ( `' ( 2nd o. F ) " Z ) ) |
77 |
60 76
|
eqtrdi |
|- ( ( Fun F /\ ran F C_ ( _V X. _V ) ) -> ( `' F " ( Y X. Z ) ) = ( ( `' ( 1st o. F ) " Y ) i^i ( `' ( 2nd o. F ) " Z ) ) ) |