| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arithufd.b |  | 
						
							| 2 |  | 1arithufd.0 |  | 
						
							| 3 |  | 1arithufd.u |  | 
						
							| 4 |  | 1arithufd.p |  | 
						
							| 5 |  | 1arithufd.m |  | 
						
							| 6 |  | 1arithufd.r |  | 
						
							| 7 |  | 1arithufdlem.2 |  | 
						
							| 8 |  | 1arithufdlem.s |  | 
						
							| 9 |  | eqeq1 |  | 
						
							| 10 | 9 | rexbidv |  | 
						
							| 11 | 6 | ad2antrr |  | 
						
							| 12 | 11 | ad2antrr |  | 
						
							| 13 |  | simplr |  | 
						
							| 14 | 1 4 12 13 | rprmcl |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 | 13 | s1cld |  | 
						
							| 18 | 5 1 | mgpbas |  | 
						
							| 19 | 18 | gsumws1 |  | 
						
							| 20 | 14 19 | syl |  | 
						
							| 21 | 20 | eqcomd |  | 
						
							| 22 | 16 17 21 | rspcedvdw |  | 
						
							| 23 | 10 14 22 | elrabd |  | 
						
							| 24 | 23 8 | eleqtrrdi |  | 
						
							| 25 | 24 | ne0d |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 6 | ufdidom |  | 
						
							| 28 | 27 | idomcringd |  | 
						
							| 29 | 28 | ad2antrr |  | 
						
							| 30 |  | simplr |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 31 | mxidlprm |  | 
						
							| 33 | 29 30 32 | syl2anc |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 26 4 2 11 33 34 | ufdprmidl |  | 
						
							| 36 | 25 35 | r19.29a |  | 
						
							| 37 | 27 | idomdomd |  | 
						
							| 38 |  | domnnzr |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 2 39 7 | krullndrng |  | 
						
							| 41 | 36 40 | r19.29a |  |