Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of Gleason p. 124. (Contributed by NM, 2-Apr-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 1idpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex | |
|
2 | elprnq | |
|
3 | breq1 | |
|
4 | df-1p | |
|
5 | 4 | eqabri | |
6 | ltmnq | |
|
7 | mulidnq | |
|
8 | 7 | breq2d | |
9 | 6 8 | bitrd | |
10 | 5 9 | bitr2id | |
11 | 3 10 | sylan9bbr | |
12 | 2 11 | sylan | |
13 | 12 | ex | |
14 | 13 | pm5.32rd | |
15 | 14 | exbidv | |
16 | 19.42v | |
|
17 | 15 16 | bitr3di | |
18 | 1 17 | bitrid | |
19 | 18 | rexbidva | |
20 | 1pr | |
|
21 | df-mp | |
|
22 | mulclnq | |
|
23 | 21 22 | genpelv | |
24 | 20 23 | mpan2 | |
25 | prnmax | |
|
26 | ltrelnq | |
|
27 | 26 | brel | |
28 | vex | |
|
29 | vex | |
|
30 | fvex | |
|
31 | mulcomnq | |
|
32 | mulassnq | |
|
33 | 28 29 30 31 32 | caov12 | |
34 | recidnq | |
|
35 | 34 | oveq2d | |
36 | 33 35 | eqtrid | |
37 | mulidnq | |
|
38 | 36 37 | sylan9eqr | |
39 | 38 | eqcomd | |
40 | ovex | |
|
41 | oveq2 | |
|
42 | 41 | eqeq2d | |
43 | 40 42 | spcev | |
44 | 27 39 43 | 3syl | |
45 | 44 | a1i | |
46 | 45 | ancld | |
47 | 46 | reximia | |
48 | 25 47 | syl | |
49 | 48 | ex | |
50 | prcdnq | |
|
51 | 50 | adantrd | |
52 | 51 | rexlimdva | |
53 | 49 52 | impbid | |
54 | 19 24 53 | 3bitr4d | |
55 | 54 | eqrdv | |