Metamath Proof Explorer


Theorem 1idpr

Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of Gleason p. 124. (Contributed by NM, 2-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion 1idpr A𝑷A𝑷1𝑷=A

Proof

Step Hyp Ref Expression
1 df-rex g1𝑷x=f𝑸ggg1𝑷x=f𝑸g
2 elprnq A𝑷fAf𝑸
3 breq1 x=f𝑸gx<𝑸ff𝑸g<𝑸f
4 df-1p 1𝑷=g|g<𝑸1𝑸
5 4 eqabri g1𝑷g<𝑸1𝑸
6 ltmnq f𝑸g<𝑸1𝑸f𝑸g<𝑸f𝑸1𝑸
7 mulidnq f𝑸f𝑸1𝑸=f
8 7 breq2d f𝑸f𝑸g<𝑸f𝑸1𝑸f𝑸g<𝑸f
9 6 8 bitrd f𝑸g<𝑸1𝑸f𝑸g<𝑸f
10 5 9 bitr2id f𝑸f𝑸g<𝑸fg1𝑷
11 3 10 sylan9bbr f𝑸x=f𝑸gx<𝑸fg1𝑷
12 2 11 sylan A𝑷fAx=f𝑸gx<𝑸fg1𝑷
13 12 ex A𝑷fAx=f𝑸gx<𝑸fg1𝑷
14 13 pm5.32rd A𝑷fAx<𝑸fx=f𝑸gg1𝑷x=f𝑸g
15 14 exbidv A𝑷fAgx<𝑸fx=f𝑸ggg1𝑷x=f𝑸g
16 19.42v gx<𝑸fx=f𝑸gx<𝑸fgx=f𝑸g
17 15 16 bitr3di A𝑷fAgg1𝑷x=f𝑸gx<𝑸fgx=f𝑸g
18 1 17 bitrid A𝑷fAg1𝑷x=f𝑸gx<𝑸fgx=f𝑸g
19 18 rexbidva A𝑷fAg1𝑷x=f𝑸gfAx<𝑸fgx=f𝑸g
20 1pr 1𝑷𝑷
21 df-mp 𝑷=y𝑷,z𝑷w|uyvzw=u𝑸v
22 mulclnq u𝑸v𝑸u𝑸v𝑸
23 21 22 genpelv A𝑷1𝑷𝑷xA𝑷1𝑷fAg1𝑷x=f𝑸g
24 20 23 mpan2 A𝑷xA𝑷1𝑷fAg1𝑷x=f𝑸g
25 prnmax A𝑷xAfAx<𝑸f
26 ltrelnq <𝑸𝑸×𝑸
27 26 brel x<𝑸fx𝑸f𝑸
28 vex fV
29 vex xV
30 fvex *𝑸fV
31 mulcomnq y𝑸z=z𝑸y
32 mulassnq y𝑸z𝑸w=y𝑸z𝑸w
33 28 29 30 31 32 caov12 f𝑸x𝑸*𝑸f=x𝑸f𝑸*𝑸f
34 recidnq f𝑸f𝑸*𝑸f=1𝑸
35 34 oveq2d f𝑸x𝑸f𝑸*𝑸f=x𝑸1𝑸
36 33 35 eqtrid f𝑸f𝑸x𝑸*𝑸f=x𝑸1𝑸
37 mulidnq x𝑸x𝑸1𝑸=x
38 36 37 sylan9eqr x𝑸f𝑸f𝑸x𝑸*𝑸f=x
39 38 eqcomd x𝑸f𝑸x=f𝑸x𝑸*𝑸f
40 ovex x𝑸*𝑸fV
41 oveq2 g=x𝑸*𝑸ff𝑸g=f𝑸x𝑸*𝑸f
42 41 eqeq2d g=x𝑸*𝑸fx=f𝑸gx=f𝑸x𝑸*𝑸f
43 40 42 spcev x=f𝑸x𝑸*𝑸fgx=f𝑸g
44 27 39 43 3syl x<𝑸fgx=f𝑸g
45 44 a1i fAx<𝑸fgx=f𝑸g
46 45 ancld fAx<𝑸fx<𝑸fgx=f𝑸g
47 46 reximia fAx<𝑸ffAx<𝑸fgx=f𝑸g
48 25 47 syl A𝑷xAfAx<𝑸fgx=f𝑸g
49 48 ex A𝑷xAfAx<𝑸fgx=f𝑸g
50 prcdnq A𝑷fAx<𝑸fxA
51 50 adantrd A𝑷fAx<𝑸fgx=f𝑸gxA
52 51 rexlimdva A𝑷fAx<𝑸fgx=f𝑸gxA
53 49 52 impbid A𝑷xAfAx<𝑸fgx=f𝑸g
54 19 24 53 3bitr4d A𝑷xA𝑷1𝑷xA
55 54 eqrdv A𝑷A𝑷1𝑷=A