Metamath Proof Explorer


Theorem 2arymaptfo

Description: The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024)

Ref Expression
Hypothesis 2arymaptf.h No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
Assertion 2arymaptfo Could not format assertion : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arymaptf.h Could not format H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) : No typesetting found for |- H = ( h e. ( 2 -aryF X ) |-> ( x e. X , y e. X |-> ( h ` { <. 0 , x >. , <. 1 , y >. } ) ) ) with typecode |-
2 1 2arymaptf Could not format ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) ) with typecode |-
3 elmapi fXX×Xf:X×XX
4 eqid aX01a0fa1=aX01a0fa1
5 4 2arympt Could not format ( ( X e. V /\ f : ( X X. X ) --> X ) -> ( a e. ( X ^m { 0 , 1 } ) |-> ( ( a ` 0 ) f ( a ` 1 ) ) ) e. ( 2 -aryF X ) ) : No typesetting found for |- ( ( X e. V /\ f : ( X X. X ) --> X ) -> ( a e. ( X ^m { 0 , 1 } ) |-> ( ( a ` 0 ) f ( a ` 1 ) ) ) e. ( 2 -aryF X ) ) with typecode |-
6 3 5 sylan2 Could not format ( ( X e. V /\ f e. ( X ^m ( X X. X ) ) ) -> ( a e. ( X ^m { 0 , 1 } ) |-> ( ( a ` 0 ) f ( a ` 1 ) ) ) e. ( 2 -aryF X ) ) : No typesetting found for |- ( ( X e. V /\ f e. ( X ^m ( X X. X ) ) ) -> ( a e. ( X ^m { 0 , 1 } ) |-> ( ( a ` 0 ) f ( a ` 1 ) ) ) e. ( 2 -aryF X ) ) with typecode |-
7 fveq2 g=aX01a0fa1Hg=HaX01a0fa1
8 7 eqeq2d g=aX01a0fa1f=Hgf=HaX01a0fa1
9 8 adantl XVfXX×Xg=aX01a0fa1f=Hgf=HaX01a0fa1
10 elmapfn fXX×XfFnX×X
11 10 adantl XVfXX×XfFnX×X
12 fnov fFnX×Xf=xX,yXxfy
13 11 12 sylib XVfXX×Xf=xX,yXxfy
14 simp1r XVfXX×Xh=aX01a0fa1xXyXh=aX01a0fa1
15 fveq1 a=0x1ya0=0x1y0
16 0ne1 01
17 c0ex 0V
18 vex xV
19 17 18 fvpr1 010x1y0=x
20 16 19 ax-mp 0x1y0=x
21 15 20 eqtrdi a=0x1ya0=x
22 fveq1 a=0x1ya1=0x1y1
23 1ex 1V
24 vex yV
25 23 24 fvpr2 010x1y1=y
26 16 25 ax-mp 0x1y1=y
27 22 26 eqtrdi a=0x1ya1=y
28 21 27 oveq12d a=0x1ya0fa1=xfy
29 28 adantl XVfXX×Xh=aX01a0fa1xXyXa=0x1ya0fa1=xfy
30 17 23 pm3.2i 0V1V
31 fprg 0V1VxXyX010x1y:01xy
32 30 16 31 mp3an13 xXyX0x1y:01xy
33 32 3adant1 XVxXyX0x1y:01xy
34 prssi xXyXxyX
35 34 3adant1 XVxXyXxyX
36 33 35 fssd XVxXyX0x1y:01X
37 simp1 XVxXyXXV
38 prex 01V
39 38 a1i XVxXyX01V
40 37 39 elmapd XVxXyX0x1yX010x1y:01X
41 36 40 mpbird XVxXyX0x1yX01
42 41 3adant1r XVfXX×XxXyX0x1yX01
43 42 3adant1r XVfXX×Xh=aX01a0fa1xXyX0x1yX01
44 ovexd XVfXX×Xh=aX01a0fa1xXyXxfyV
45 nfv aXVfXX×X
46 nfmpt1 _aaX01a0fa1
47 46 nfeq2 ah=aX01a0fa1
48 45 47 nfan aXVfXX×Xh=aX01a0fa1
49 nfv axX
50 nfv ayX
51 48 49 50 nf3an aXVfXX×Xh=aX01a0fa1xXyX
52 nfcv _a0x1y
53 nfcv _axfy
54 14 29 43 44 51 52 53 fvmptdf XVfXX×Xh=aX01a0fa1xXyXh0x1y=xfy
55 54 mpoeq3dva XVfXX×Xh=aX01a0fa1xX,yXh0x1y=xX,yXxfy
56 mpoexga XVXVxX,yXxfyV
57 56 anidms XVxX,yXxfyV
58 57 adantr XVfXX×XxX,yXxfyV
59 1 55 6 58 fvmptd2 XVfXX×XHaX01a0fa1=xX,yXxfy
60 13 59 eqtr4d XVfXX×Xf=HaX01a0fa1
61 6 9 60 rspcedvd Could not format ( ( X e. V /\ f e. ( X ^m ( X X. X ) ) ) -> E. g e. ( 2 -aryF X ) f = ( H ` g ) ) : No typesetting found for |- ( ( X e. V /\ f e. ( X ^m ( X X. X ) ) ) -> E. g e. ( 2 -aryF X ) f = ( H ` g ) ) with typecode |-
62 61 ralrimiva Could not format ( X e. V -> A. f e. ( X ^m ( X X. X ) ) E. g e. ( 2 -aryF X ) f = ( H ` g ) ) : No typesetting found for |- ( X e. V -> A. f e. ( X ^m ( X X. X ) ) E. g e. ( 2 -aryF X ) f = ( H ` g ) ) with typecode |-
63 dffo3 Could not format ( H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) <-> ( H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) /\ A. f e. ( X ^m ( X X. X ) ) E. g e. ( 2 -aryF X ) f = ( H ` g ) ) ) : No typesetting found for |- ( H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) <-> ( H : ( 2 -aryF X ) --> ( X ^m ( X X. X ) ) /\ A. f e. ( X ^m ( X X. X ) ) E. g e. ( 2 -aryF X ) f = ( H ` g ) ) ) with typecode |-
64 2 62 63 sylanbrc Could not format ( X e. V -> H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) ) : No typesetting found for |- ( X e. V -> H : ( 2 -aryF X ) -onto-> ( X ^m ( X X. X ) ) ) with typecode |-