Metamath Proof Explorer


Theorem 2sphere

Description: The sphere with center M and radius R in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023)

Ref Expression
Hypotheses 2sphere.i I = 1 2
2sphere.e E = I
2sphere.p P = I
2sphere.s S = Sphere E
2sphere.c C = p P | p 1 M 1 2 + p 2 M 2 2 = R 2
Assertion 2sphere M P R 0 +∞ M S R = C

Proof

Step Hyp Ref Expression
1 2sphere.i I = 1 2
2 2sphere.e E = I
3 2sphere.p P = I
4 2sphere.s S = Sphere E
5 2sphere.c C = p P | p 1 M 1 2 + p 2 M 2 2 = R 2
6 prfi 1 2 Fin
7 1 6 eqeltri I Fin
8 simpl M P R 0 +∞ M P
9 elrege0 R 0 +∞ R 0 R
10 9 simplbi R 0 +∞ R
11 10 adantl M P R 0 +∞ R
12 eqid dist E = dist E
13 2 3 12 4 rrxsphere I Fin M P R M S R = p P | p dist E M = R
14 7 8 11 13 mp3an2i M P R 0 +∞ M S R = p P | p dist E M = R
15 9 biimpi R 0 +∞ R 0 R
16 15 ad2antlr M P R 0 +∞ p P R 0 R
17 sqrtsq R 0 R R 2 = R
18 16 17 syl M P R 0 +∞ p P R 2 = R
19 18 eqeq2d M P R 0 +∞ p P p 1 M 1 2 + p 2 M 2 2 = R 2 p 1 M 1 2 + p 2 M 2 2 = R
20 1 3 rrx2pxel p P p 1
21 20 adantl M P p P p 1
22 1 3 rrx2pxel M P M 1
23 22 adantr M P p P M 1
24 21 23 resubcld M P p P p 1 M 1
25 24 resqcld M P p P p 1 M 1 2
26 1 3 rrx2pyel p P p 2
27 26 adantl M P p P p 2
28 1 3 rrx2pyel M P M 2
29 28 adantr M P p P M 2
30 27 29 resubcld M P p P p 2 M 2
31 30 resqcld M P p P p 2 M 2 2
32 25 31 readdcld M P p P p 1 M 1 2 + p 2 M 2 2
33 24 sqge0d M P p P 0 p 1 M 1 2
34 30 sqge0d M P p P 0 p 2 M 2 2
35 25 31 33 34 addge0d M P p P 0 p 1 M 1 2 + p 2 M 2 2
36 32 35 jca M P p P p 1 M 1 2 + p 2 M 2 2 0 p 1 M 1 2 + p 2 M 2 2
37 36 adantlr M P R 0 +∞ p P p 1 M 1 2 + p 2 M 2 2 0 p 1 M 1 2 + p 2 M 2 2
38 resqcl R R 2
39 sqge0 R 0 R 2
40 38 39 jca R R 2 0 R 2
41 10 40 syl R 0 +∞ R 2 0 R 2
42 41 ad2antlr M P R 0 +∞ p P R 2 0 R 2
43 sqrt11 p 1 M 1 2 + p 2 M 2 2 0 p 1 M 1 2 + p 2 M 2 2 R 2 0 R 2 p 1 M 1 2 + p 2 M 2 2 = R 2 p 1 M 1 2 + p 2 M 2 2 = R 2
44 37 42 43 syl2anc M P R 0 +∞ p P p 1 M 1 2 + p 2 M 2 2 = R 2 p 1 M 1 2 + p 2 M 2 2 = R 2
45 8 anim1ci M P R 0 +∞ p P p P M P
46 2nn0 2 0
47 eqid 𝔼 hil 2 = 𝔼 hil 2
48 47 ehlval 2 0 𝔼 hil 2 = 1 2
49 46 48 ax-mp 𝔼 hil 2 = 1 2
50 fz12pr 1 2 = 1 2
51 50 1 eqtr4i 1 2 = I
52 51 fveq2i 1 2 = I
53 49 52 eqtri 𝔼 hil 2 = I
54 2 53 eqtr4i E = 𝔼 hil 2
55 1 oveq2i I = 1 2
56 3 55 eqtri P = 1 2
57 54 56 12 ehl2eudisval p P M P p dist E M = p 1 M 1 2 + p 2 M 2 2
58 45 57 syl M P R 0 +∞ p P p dist E M = p 1 M 1 2 + p 2 M 2 2
59 58 eqcomd M P R 0 +∞ p P p 1 M 1 2 + p 2 M 2 2 = p dist E M
60 59 eqeq1d M P R 0 +∞ p P p 1 M 1 2 + p 2 M 2 2 = R p dist E M = R
61 19 44 60 3bitr3d M P R 0 +∞ p P p 1 M 1 2 + p 2 M 2 2 = R 2 p dist E M = R
62 61 rabbidva M P R 0 +∞ p P | p 1 M 1 2 + p 2 M 2 2 = R 2 = p P | p dist E M = R
63 5 62 syl5req M P R 0 +∞ p P | p dist E M = R = C
64 14 63 eqtrd M P R 0 +∞ M S R = C