Metamath Proof Explorer


Theorem 2sphere

Description: The sphere with center M and radius R in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023)

Ref Expression
Hypotheses 2sphere.i I=12
2sphere.e E=msup
2sphere.p P=I
2sphere.s S=SphereE
2sphere.c C=pP|p1M12+p2M22=R2
Assertion 2sphere MPR0+∞MSR=C

Proof

Step Hyp Ref Expression
1 2sphere.i I=12
2 2sphere.e E=msup
3 2sphere.p P=I
4 2sphere.s S=SphereE
5 2sphere.c C=pP|p1M12+p2M22=R2
6 prfi 12Fin
7 1 6 eqeltri IFin
8 simpl MPR0+∞MP
9 elrege0 R0+∞R0R
10 9 simplbi R0+∞R
11 10 adantl MPR0+∞R
12 eqid distE=distE
13 2 3 12 4 rrxsphere IFinMPRMSR=pP|pdistEM=R
14 7 8 11 13 mp3an2i MPR0+∞MSR=pP|pdistEM=R
15 9 biimpi R0+∞R0R
16 15 ad2antlr MPR0+∞pPR0R
17 sqrtsq R0RR2=R
18 16 17 syl MPR0+∞pPR2=R
19 18 eqeq2d MPR0+∞pPp1M12+p2M22=R2p1M12+p2M22=R
20 1 3 rrx2pxel pPp1
21 20 adantl MPpPp1
22 1 3 rrx2pxel MPM1
23 22 adantr MPpPM1
24 21 23 resubcld MPpPp1M1
25 24 resqcld MPpPp1M12
26 1 3 rrx2pyel pPp2
27 26 adantl MPpPp2
28 1 3 rrx2pyel MPM2
29 28 adantr MPpPM2
30 27 29 resubcld MPpPp2M2
31 30 resqcld MPpPp2M22
32 25 31 readdcld MPpPp1M12+p2M22
33 24 sqge0d MPpP0p1M12
34 30 sqge0d MPpP0p2M22
35 25 31 33 34 addge0d MPpP0p1M12+p2M22
36 32 35 jca MPpPp1M12+p2M220p1M12+p2M22
37 36 adantlr MPR0+∞pPp1M12+p2M220p1M12+p2M22
38 resqcl RR2
39 sqge0 R0R2
40 38 39 jca RR20R2
41 10 40 syl R0+∞R20R2
42 41 ad2antlr MPR0+∞pPR20R2
43 sqrt11 p1M12+p2M220p1M12+p2M22R20R2p1M12+p2M22=R2p1M12+p2M22=R2
44 37 42 43 syl2anc MPR0+∞pPp1M12+p2M22=R2p1M12+p2M22=R2
45 8 anim1ci MPR0+∞pPpPMP
46 2nn0 20
47 eqid 𝔼hil2=𝔼hil2
48 47 ehlval 20𝔼hil2=msup
49 46 48 ax-mp 𝔼hil2=msup
50 fz12pr 12=12
51 50 1 eqtr4i 12=I
52 51 fveq2i msup=msup
53 49 52 eqtri 𝔼hil2=msup
54 2 53 eqtr4i E=𝔼hil2
55 1 oveq2i I=12
56 3 55 eqtri P=12
57 54 56 12 ehl2eudisval pPMPpdistEM=p1M12+p2M22
58 45 57 syl MPR0+∞pPpdistEM=p1M12+p2M22
59 58 eqcomd MPR0+∞pPp1M12+p2M22=pdistEM
60 59 eqeq1d MPR0+∞pPp1M12+p2M22=RpdistEM=R
61 19 44 60 3bitr3d MPR0+∞pPp1M12+p2M22=R2pdistEM=R
62 61 rabbidva MPR0+∞pP|p1M12+p2M22=R2=pP|pdistEM=R
63 5 62 eqtr2id MPR0+∞pP|pdistEM=R=C
64 14 63 eqtrd MPR0+∞MSR=C