Metamath Proof Explorer


Theorem 2zrngamgm

Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
Assertion 2zrngamgm R Mgm

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 eqeq1 z = a z = 2 x a = 2 x
4 3 rexbidv z = a x z = 2 x x a = 2 x
5 4 1 elrab2 a E a x a = 2 x
6 eqeq1 z = b z = 2 x b = 2 x
7 6 rexbidv z = b x z = 2 x x b = 2 x
8 7 1 elrab2 b E b x b = 2 x
9 oveq2 x = y 2 x = 2 y
10 9 eqeq2d x = y a = 2 x a = 2 y
11 10 cbvrexvw x a = 2 x y a = 2 y
12 zaddcl a b a + b
13 12 ancoms b a a + b
14 13 adantr b a x b = 2 x y a = 2 y a + b
15 simpl y a = 2 y y
16 simpl x b = 2 x x
17 zaddcl y x y + x
18 15 16 17 syl2anr x b = 2 x y a = 2 y y + x
19 18 adantr x b = 2 x y a = 2 y b a y + x
20 oveq2 z = y + x 2 z = 2 y + x
21 20 eqeq2d z = y + x 2 y + x = 2 z 2 y + x = 2 y + x
22 21 adantl x b = 2 x y a = 2 y b a z = y + x 2 y + x = 2 z 2 y + x = 2 y + x
23 eqidd x b = 2 x y a = 2 y b a 2 y + x = 2 y + x
24 19 22 23 rspcedvd x b = 2 x y a = 2 y b a z 2 y + x = 2 z
25 simpr y a = 2 y a = 2 y
26 simpr x b = 2 x b = 2 x
27 25 26 oveqan12rd x b = 2 x y a = 2 y a + b = 2 y + 2 x
28 27 adantr x b = 2 x y a = 2 y b a a + b = 2 y + 2 x
29 2cnd x b = 2 x y a = 2 y 2
30 zcn y y
31 30 adantr y a = 2 y y
32 31 adantl x b = 2 x y a = 2 y y
33 zcn x x
34 33 adantr x b = 2 x x
35 34 adantr x b = 2 x y a = 2 y x
36 29 32 35 adddid x b = 2 x y a = 2 y 2 y + x = 2 y + 2 x
37 36 adantr x b = 2 x y a = 2 y b a 2 y + x = 2 y + 2 x
38 28 37 eqtr4d x b = 2 x y a = 2 y b a a + b = 2 y + x
39 38 eqeq1d x b = 2 x y a = 2 y b a a + b = 2 z 2 y + x = 2 z
40 39 rexbidv x b = 2 x y a = 2 y b a z a + b = 2 z z 2 y + x = 2 z
41 24 40 mpbird x b = 2 x y a = 2 y b a z a + b = 2 z
42 41 ex x b = 2 x y a = 2 y b a z a + b = 2 z
43 42 rexlimdvaa x b = 2 x y a = 2 y b a z a + b = 2 z
44 43 rexlimiva x b = 2 x y a = 2 y b a z a + b = 2 z
45 44 imp x b = 2 x y a = 2 y b a z a + b = 2 z
46 oveq2 x = z 2 x = 2 z
47 46 eqeq2d x = z a + b = 2 x a + b = 2 z
48 47 cbvrexvw x a + b = 2 x z a + b = 2 z
49 45 48 syl6ibr x b = 2 x y a = 2 y b a x a + b = 2 x
50 49 impcom b a x b = 2 x y a = 2 y x a + b = 2 x
51 eqeq1 z = a + b z = 2 x a + b = 2 x
52 51 rexbidv z = a + b x z = 2 x x a + b = 2 x
53 52 1 elrab2 a + b E a + b x a + b = 2 x
54 14 50 53 sylanbrc b a x b = 2 x y a = 2 y a + b E
55 54 exp32 b a x b = 2 x y a = 2 y a + b E
56 55 impancom b x b = 2 x a y a = 2 y a + b E
57 56 com13 y a = 2 y a b x b = 2 x a + b E
58 11 57 sylbi x a = 2 x a b x b = 2 x a + b E
59 58 impcom a x a = 2 x b x b = 2 x a + b E
60 59 imp a x a = 2 x b x b = 2 x a + b E
61 5 8 60 syl2anb a E b E a + b E
62 61 rgen2 a E b E a + b E
63 0z 0
64 2cn 2
65 0zd 2 0
66 oveq2 x = 0 2 x = 2 0
67 66 eqeq2d x = 0 0 = 2 x 0 = 2 0
68 67 adantl 2 x = 0 0 = 2 x 0 = 2 0
69 mul01 2 2 0 = 0
70 69 eqcomd 2 0 = 2 0
71 65 68 70 rspcedvd 2 x 0 = 2 x
72 64 71 ax-mp x 0 = 2 x
73 eqeq1 z = 0 z = 2 x 0 = 2 x
74 73 rexbidv z = 0 x z = 2 x x 0 = 2 x
75 74 elrab 0 z | x z = 2 x 0 x 0 = 2 x
76 63 72 75 mpbir2an 0 z | x z = 2 x
77 76 1 eleqtrri 0 E
78 1 2 2zrngbas E = Base R
79 1 2 2zrngadd + = + R
80 78 79 ismgmn0 0 E R Mgm a E b E a + b E
81 77 80 ax-mp R Mgm a E b E a + b E
82 62 81 mpbir R Mgm