Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
The non-unital ring of even integers
2zrngamgm
Next ⟩
2zrngasgrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
2zrngamgm
Description:
R is an (additive) magma.
(Contributed by
AV
, 6-Jan-2020)
Ref
Expression
Hypotheses
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
x
2zrngbas.r
⊢
R
=
ℂ
fld
↾
𝑠
E
Assertion
2zrngamgm
⊢
R
∈
Mgm
Proof
Step
Hyp
Ref
Expression
1
2zrng.e
⊢
E
=
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
x
2
2zrngbas.r
⊢
R
=
ℂ
fld
↾
𝑠
E
3
eqeq1
⊢
z
=
a
→
z
=
2
x
↔
a
=
2
x
4
3
rexbidv
⊢
z
=
a
→
∃
x
∈
ℤ
z
=
2
x
↔
∃
x
∈
ℤ
a
=
2
x
5
4
1
elrab2
⊢
a
∈
E
↔
a
∈
ℤ
∧
∃
x
∈
ℤ
a
=
2
x
6
eqeq1
⊢
z
=
b
→
z
=
2
x
↔
b
=
2
x
7
6
rexbidv
⊢
z
=
b
→
∃
x
∈
ℤ
z
=
2
x
↔
∃
x
∈
ℤ
b
=
2
x
8
7
1
elrab2
⊢
b
∈
E
↔
b
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
9
oveq2
⊢
x
=
y
→
2
x
=
2
y
10
9
eqeq2d
⊢
x
=
y
→
a
=
2
x
↔
a
=
2
y
11
10
cbvrexvw
⊢
∃
x
∈
ℤ
a
=
2
x
↔
∃
y
∈
ℤ
a
=
2
y
12
zaddcl
⊢
a
∈
ℤ
∧
b
∈
ℤ
→
a
+
b
∈
ℤ
13
12
ancoms
⊢
b
∈
ℤ
∧
a
∈
ℤ
→
a
+
b
∈
ℤ
14
13
adantr
⊢
b
∈
ℤ
∧
a
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
∧
∃
y
∈
ℤ
a
=
2
y
→
a
+
b
∈
ℤ
15
simpl
⊢
y
∈
ℤ
∧
a
=
2
y
→
y
∈
ℤ
16
simpl
⊢
x
∈
ℤ
∧
b
=
2
x
→
x
∈
ℤ
17
zaddcl
⊢
y
∈
ℤ
∧
x
∈
ℤ
→
y
+
x
∈
ℤ
18
15
16
17
syl2anr
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
y
+
x
∈
ℤ
19
18
adantr
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
y
+
x
∈
ℤ
20
oveq2
⊢
z
=
y
+
x
→
2
z
=
2
y
+
x
21
20
eqeq2d
⊢
z
=
y
+
x
→
2
y
+
x
=
2
z
↔
2
y
+
x
=
2
y
+
x
22
21
adantl
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
∧
z
=
y
+
x
→
2
y
+
x
=
2
z
↔
2
y
+
x
=
2
y
+
x
23
eqidd
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
2
y
+
x
=
2
y
+
x
24
19
22
23
rspcedvd
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
2
y
+
x
=
2
z
25
simpr
⊢
y
∈
ℤ
∧
a
=
2
y
→
a
=
2
y
26
simpr
⊢
x
∈
ℤ
∧
b
=
2
x
→
b
=
2
x
27
25
26
oveqan12rd
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
a
+
b
=
2
y
+
2
x
28
27
adantr
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
a
+
b
=
2
y
+
2
x
29
2cnd
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
2
∈
ℂ
30
zcn
⊢
y
∈
ℤ
→
y
∈
ℂ
31
30
adantr
⊢
y
∈
ℤ
∧
a
=
2
y
→
y
∈
ℂ
32
31
adantl
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
y
∈
ℂ
33
zcn
⊢
x
∈
ℤ
→
x
∈
ℂ
34
33
adantr
⊢
x
∈
ℤ
∧
b
=
2
x
→
x
∈
ℂ
35
34
adantr
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
x
∈
ℂ
36
29
32
35
adddid
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
2
y
+
x
=
2
y
+
2
x
37
36
adantr
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
2
y
+
x
=
2
y
+
2
x
38
28
37
eqtr4d
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
a
+
b
=
2
y
+
x
39
38
eqeq1d
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
a
+
b
=
2
z
↔
2
y
+
x
=
2
z
40
39
rexbidv
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
a
+
b
=
2
z
↔
∃
z
∈
ℤ
2
y
+
x
=
2
z
41
24
40
mpbird
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
∧
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
a
+
b
=
2
z
42
41
ex
⊢
x
∈
ℤ
∧
b
=
2
x
∧
y
∈
ℤ
∧
a
=
2
y
→
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
a
+
b
=
2
z
43
42
rexlimdvaa
⊢
x
∈
ℤ
∧
b
=
2
x
→
∃
y
∈
ℤ
a
=
2
y
→
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
a
+
b
=
2
z
44
43
rexlimiva
⊢
∃
x
∈
ℤ
b
=
2
x
→
∃
y
∈
ℤ
a
=
2
y
→
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
a
+
b
=
2
z
45
44
imp
⊢
∃
x
∈
ℤ
b
=
2
x
∧
∃
y
∈
ℤ
a
=
2
y
→
b
∈
ℤ
∧
a
∈
ℤ
→
∃
z
∈
ℤ
a
+
b
=
2
z
46
oveq2
⊢
x
=
z
→
2
x
=
2
z
47
46
eqeq2d
⊢
x
=
z
→
a
+
b
=
2
x
↔
a
+
b
=
2
z
48
47
cbvrexvw
⊢
∃
x
∈
ℤ
a
+
b
=
2
x
↔
∃
z
∈
ℤ
a
+
b
=
2
z
49
45
48
syl6ibr
⊢
∃
x
∈
ℤ
b
=
2
x
∧
∃
y
∈
ℤ
a
=
2
y
→
b
∈
ℤ
∧
a
∈
ℤ
→
∃
x
∈
ℤ
a
+
b
=
2
x
50
49
impcom
⊢
b
∈
ℤ
∧
a
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
∧
∃
y
∈
ℤ
a
=
2
y
→
∃
x
∈
ℤ
a
+
b
=
2
x
51
eqeq1
⊢
z
=
a
+
b
→
z
=
2
x
↔
a
+
b
=
2
x
52
51
rexbidv
⊢
z
=
a
+
b
→
∃
x
∈
ℤ
z
=
2
x
↔
∃
x
∈
ℤ
a
+
b
=
2
x
53
52
1
elrab2
⊢
a
+
b
∈
E
↔
a
+
b
∈
ℤ
∧
∃
x
∈
ℤ
a
+
b
=
2
x
54
14
50
53
sylanbrc
⊢
b
∈
ℤ
∧
a
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
∧
∃
y
∈
ℤ
a
=
2
y
→
a
+
b
∈
E
55
54
exp32
⊢
b
∈
ℤ
∧
a
∈
ℤ
→
∃
x
∈
ℤ
b
=
2
x
→
∃
y
∈
ℤ
a
=
2
y
→
a
+
b
∈
E
56
55
impancom
⊢
b
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
→
a
∈
ℤ
→
∃
y
∈
ℤ
a
=
2
y
→
a
+
b
∈
E
57
56
com13
⊢
∃
y
∈
ℤ
a
=
2
y
→
a
∈
ℤ
→
b
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
→
a
+
b
∈
E
58
11
57
sylbi
⊢
∃
x
∈
ℤ
a
=
2
x
→
a
∈
ℤ
→
b
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
→
a
+
b
∈
E
59
58
impcom
⊢
a
∈
ℤ
∧
∃
x
∈
ℤ
a
=
2
x
→
b
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
→
a
+
b
∈
E
60
59
imp
⊢
a
∈
ℤ
∧
∃
x
∈
ℤ
a
=
2
x
∧
b
∈
ℤ
∧
∃
x
∈
ℤ
b
=
2
x
→
a
+
b
∈
E
61
5
8
60
syl2anb
⊢
a
∈
E
∧
b
∈
E
→
a
+
b
∈
E
62
61
rgen2
⊢
∀
a
∈
E
∀
b
∈
E
a
+
b
∈
E
63
0z
⊢
0
∈
ℤ
64
2cn
⊢
2
∈
ℂ
65
0zd
⊢
2
∈
ℂ
→
0
∈
ℤ
66
oveq2
⊢
x
=
0
→
2
x
=
2
⋅
0
67
66
eqeq2d
⊢
x
=
0
→
0
=
2
x
↔
0
=
2
⋅
0
68
67
adantl
⊢
2
∈
ℂ
∧
x
=
0
→
0
=
2
x
↔
0
=
2
⋅
0
69
mul01
⊢
2
∈
ℂ
→
2
⋅
0
=
0
70
69
eqcomd
⊢
2
∈
ℂ
→
0
=
2
⋅
0
71
65
68
70
rspcedvd
⊢
2
∈
ℂ
→
∃
x
∈
ℤ
0
=
2
x
72
64
71
ax-mp
⊢
∃
x
∈
ℤ
0
=
2
x
73
eqeq1
⊢
z
=
0
→
z
=
2
x
↔
0
=
2
x
74
73
rexbidv
⊢
z
=
0
→
∃
x
∈
ℤ
z
=
2
x
↔
∃
x
∈
ℤ
0
=
2
x
75
74
elrab
⊢
0
∈
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
x
↔
0
∈
ℤ
∧
∃
x
∈
ℤ
0
=
2
x
76
63
72
75
mpbir2an
⊢
0
∈
z
∈
ℤ
|
∃
x
∈
ℤ
z
=
2
x
77
76
1
eleqtrri
⊢
0
∈
E
78
1
2
2zrngbas
⊢
E
=
Base
R
79
1
2
2zrngadd
⊢
+
=
+
R
80
78
79
ismgmn0
⊢
0
∈
E
→
R
∈
Mgm
↔
∀
a
∈
E
∀
b
∈
E
a
+
b
∈
E
81
77
80
ax-mp
⊢
R
∈
Mgm
↔
∀
a
∈
E
∀
b
∈
E
a
+
b
∈
E
82
62
81
mpbir
⊢
R
∈
Mgm