Metamath Proof Explorer


Theorem 2zrngamgm

Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
Assertion 2zrngamgm RMgm

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 eqeq1 z=az=2xa=2x
4 3 rexbidv z=axz=2xxa=2x
5 4 1 elrab2 aEaxa=2x
6 eqeq1 z=bz=2xb=2x
7 6 rexbidv z=bxz=2xxb=2x
8 7 1 elrab2 bEbxb=2x
9 oveq2 x=y2x=2y
10 9 eqeq2d x=ya=2xa=2y
11 10 cbvrexvw xa=2xya=2y
12 zaddcl aba+b
13 12 ancoms baa+b
14 13 adantr baxb=2xya=2ya+b
15 simpl ya=2yy
16 simpl xb=2xx
17 zaddcl yxy+x
18 15 16 17 syl2anr xb=2xya=2yy+x
19 18 adantr xb=2xya=2ybay+x
20 oveq2 z=y+x2z=2y+x
21 20 eqeq2d z=y+x2y+x=2z2y+x=2y+x
22 21 adantl xb=2xya=2ybaz=y+x2y+x=2z2y+x=2y+x
23 eqidd xb=2xya=2yba2y+x=2y+x
24 19 22 23 rspcedvd xb=2xya=2ybaz2y+x=2z
25 simpr ya=2ya=2y
26 simpr xb=2xb=2x
27 25 26 oveqan12rd xb=2xya=2ya+b=2y+2x
28 27 adantr xb=2xya=2ybaa+b=2y+2x
29 2cnd xb=2xya=2y2
30 zcn yy
31 30 adantr ya=2yy
32 31 adantl xb=2xya=2yy
33 zcn xx
34 33 adantr xb=2xx
35 34 adantr xb=2xya=2yx
36 29 32 35 adddid xb=2xya=2y2y+x=2y+2x
37 36 adantr xb=2xya=2yba2y+x=2y+2x
38 28 37 eqtr4d xb=2xya=2ybaa+b=2y+x
39 38 eqeq1d xb=2xya=2ybaa+b=2z2y+x=2z
40 39 rexbidv xb=2xya=2ybaza+b=2zz2y+x=2z
41 24 40 mpbird xb=2xya=2ybaza+b=2z
42 41 ex xb=2xya=2ybaza+b=2z
43 42 rexlimdvaa xb=2xya=2ybaza+b=2z
44 43 rexlimiva xb=2xya=2ybaza+b=2z
45 44 imp xb=2xya=2ybaza+b=2z
46 oveq2 x=z2x=2z
47 46 eqeq2d x=za+b=2xa+b=2z
48 47 cbvrexvw xa+b=2xza+b=2z
49 45 48 syl6ibr xb=2xya=2ybaxa+b=2x
50 49 impcom baxb=2xya=2yxa+b=2x
51 eqeq1 z=a+bz=2xa+b=2x
52 51 rexbidv z=a+bxz=2xxa+b=2x
53 52 1 elrab2 a+bEa+bxa+b=2x
54 14 50 53 sylanbrc baxb=2xya=2ya+bE
55 54 exp32 baxb=2xya=2ya+bE
56 55 impancom bxb=2xaya=2ya+bE
57 56 com13 ya=2yabxb=2xa+bE
58 11 57 sylbi xa=2xabxb=2xa+bE
59 58 impcom axa=2xbxb=2xa+bE
60 59 imp axa=2xbxb=2xa+bE
61 5 8 60 syl2anb aEbEa+bE
62 61 rgen2 aEbEa+bE
63 0z 0
64 2cn 2
65 0zd 20
66 oveq2 x=02x=20
67 66 eqeq2d x=00=2x0=20
68 67 adantl 2x=00=2x0=20
69 mul01 220=0
70 69 eqcomd 20=20
71 65 68 70 rspcedvd 2x0=2x
72 64 71 ax-mp x0=2x
73 eqeq1 z=0z=2x0=2x
74 73 rexbidv z=0xz=2xx0=2x
75 74 elrab 0z|xz=2x0x0=2x
76 63 72 75 mpbir2an 0z|xz=2x
77 76 1 eleqtrri 0E
78 1 2 2zrngbas E=BaseR
79 1 2 2zrngadd +=+R
80 78 79 ismgmn0 0ERMgmaEbEa+bE
81 77 80 ax-mp RMgmaEbEa+bE
82 62 81 mpbir RMgm