Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
|
2 |
|
2zrngbas.r |
|
3 |
|
eqeq1 |
|
4 |
3
|
rexbidv |
|
5 |
4 1
|
elrab2 |
|
6 |
|
eqeq1 |
|
7 |
6
|
rexbidv |
|
8 |
7 1
|
elrab2 |
|
9 |
|
oveq2 |
|
10 |
9
|
eqeq2d |
|
11 |
10
|
cbvrexvw |
|
12 |
|
zaddcl |
|
13 |
12
|
ancoms |
|
14 |
13
|
adantr |
|
15 |
|
simpl |
|
16 |
|
simpl |
|
17 |
|
zaddcl |
|
18 |
15 16 17
|
syl2anr |
|
19 |
18
|
adantr |
|
20 |
|
oveq2 |
|
21 |
20
|
eqeq2d |
|
22 |
21
|
adantl |
|
23 |
|
eqidd |
|
24 |
19 22 23
|
rspcedvd |
|
25 |
|
simpr |
|
26 |
|
simpr |
|
27 |
25 26
|
oveqan12rd |
|
28 |
27
|
adantr |
|
29 |
|
2cnd |
|
30 |
|
zcn |
|
31 |
30
|
adantr |
|
32 |
31
|
adantl |
|
33 |
|
zcn |
|
34 |
33
|
adantr |
|
35 |
34
|
adantr |
|
36 |
29 32 35
|
adddid |
|
37 |
36
|
adantr |
|
38 |
28 37
|
eqtr4d |
|
39 |
38
|
eqeq1d |
|
40 |
39
|
rexbidv |
|
41 |
24 40
|
mpbird |
|
42 |
41
|
ex |
|
43 |
42
|
rexlimdvaa |
|
44 |
43
|
rexlimiva |
|
45 |
44
|
imp |
|
46 |
|
oveq2 |
|
47 |
46
|
eqeq2d |
|
48 |
47
|
cbvrexvw |
|
49 |
45 48
|
syl6ibr |
|
50 |
49
|
impcom |
|
51 |
|
eqeq1 |
|
52 |
51
|
rexbidv |
|
53 |
52 1
|
elrab2 |
|
54 |
14 50 53
|
sylanbrc |
|
55 |
54
|
exp32 |
|
56 |
55
|
impancom |
|
57 |
56
|
com13 |
|
58 |
11 57
|
sylbi |
|
59 |
58
|
impcom |
|
60 |
59
|
imp |
|
61 |
5 8 60
|
syl2anb |
|
62 |
61
|
rgen2 |
|
63 |
|
0z |
|
64 |
|
2cn |
|
65 |
|
0zd |
|
66 |
|
oveq2 |
|
67 |
66
|
eqeq2d |
|
68 |
67
|
adantl |
|
69 |
|
mul01 |
|
70 |
69
|
eqcomd |
|
71 |
65 68 70
|
rspcedvd |
|
72 |
64 71
|
ax-mp |
|
73 |
|
eqeq1 |
|
74 |
73
|
rexbidv |
|
75 |
74
|
elrab |
|
76 |
63 72 75
|
mpbir2an |
|
77 |
76 1
|
eleqtrri |
|
78 |
1 2
|
2zrngbas |
|
79 |
1 2
|
2zrngadd |
|
80 |
78 79
|
ismgmn0 |
|
81 |
77 80
|
ax-mp |
|
82 |
62 81
|
mpbir |
|