| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
|
| 2 |
|
2zrngbas.r |
|
| 3 |
|
eqeq1 |
|
| 4 |
3
|
rexbidv |
|
| 5 |
4 1
|
elrab2 |
|
| 6 |
|
eqeq1 |
|
| 7 |
6
|
rexbidv |
|
| 8 |
7 1
|
elrab2 |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
10
|
cbvrexvw |
|
| 12 |
|
zaddcl |
|
| 13 |
12
|
ancoms |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpl |
|
| 16 |
|
simpl |
|
| 17 |
|
zaddcl |
|
| 18 |
15 16 17
|
syl2anr |
|
| 19 |
18
|
adantr |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
21
|
adantl |
|
| 23 |
|
eqidd |
|
| 24 |
19 22 23
|
rspcedvd |
|
| 25 |
|
simpr |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
oveqan12rd |
|
| 28 |
27
|
adantr |
|
| 29 |
|
2cnd |
|
| 30 |
|
zcn |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
adantl |
|
| 33 |
|
zcn |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
adantr |
|
| 36 |
29 32 35
|
adddid |
|
| 37 |
36
|
adantr |
|
| 38 |
28 37
|
eqtr4d |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
39
|
rexbidv |
|
| 41 |
24 40
|
mpbird |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
rexlimdvaa |
|
| 44 |
43
|
rexlimiva |
|
| 45 |
44
|
imp |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
47
|
cbvrexvw |
|
| 49 |
45 48
|
imbitrrdi |
|
| 50 |
49
|
impcom |
|
| 51 |
|
eqeq1 |
|
| 52 |
51
|
rexbidv |
|
| 53 |
52 1
|
elrab2 |
|
| 54 |
14 50 53
|
sylanbrc |
|
| 55 |
54
|
exp32 |
|
| 56 |
55
|
impancom |
|
| 57 |
56
|
com13 |
|
| 58 |
11 57
|
sylbi |
|
| 59 |
58
|
impcom |
|
| 60 |
59
|
imp |
|
| 61 |
5 8 60
|
syl2anb |
|
| 62 |
61
|
rgen2 |
|
| 63 |
|
0z |
|
| 64 |
|
2cn |
|
| 65 |
|
0zd |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
67
|
adantl |
|
| 69 |
|
mul01 |
|
| 70 |
69
|
eqcomd |
|
| 71 |
65 68 70
|
rspcedvd |
|
| 72 |
64 71
|
ax-mp |
|
| 73 |
|
eqeq1 |
|
| 74 |
73
|
rexbidv |
|
| 75 |
74
|
elrab |
|
| 76 |
63 72 75
|
mpbir2an |
|
| 77 |
76 1
|
eleqtrri |
|
| 78 |
1 2
|
2zrngbas |
|
| 79 |
1 2
|
2zrngadd |
|
| 80 |
78 79
|
ismgmn0 |
|
| 81 |
77 80
|
ax-mp |
|
| 82 |
62 81
|
mpbir |
|