Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
|
2 |
|
4thatlem0.l |
|
3 |
|
4thatlem0.j |
|
4 |
|
4thatlem0.m |
|
5 |
|
4thatlem0.a |
|
6 |
|
4thatlem0.h |
|
7 |
|
4thatlem0.u |
|
8 |
|
4thatlem0.v |
|
9 |
|
4thatlem0.c |
|
10 |
|
4thatlem0.d |
|
11 |
1 2 3 4 5 6 7 8
|
4atexlemtlw |
|
12 |
1 2 3 4 5 6 7 8 9
|
4atexlemnclw |
|
13 |
|
nbrne2 |
|
14 |
11 12 13
|
syl2anc |
|
15 |
1
|
4atexlemk |
|
16 |
1
|
4atexlemq |
|
17 |
1
|
4atexlemt |
|
18 |
3 5
|
hlatjcom |
|
19 |
15 16 17 18
|
syl3anc |
|
20 |
|
simp221 |
|
21 |
1 20
|
sylbi |
|
22 |
3 5
|
hlatjcom |
|
23 |
15 21 17 22
|
syl3anc |
|
24 |
19 23
|
oveq12d |
|
25 |
1
|
4atexlemkc |
|
26 |
1
|
4atexlemp |
|
27 |
1
|
4atexlempnq |
|
28 |
|
simp223 |
|
29 |
1 28
|
sylbi |
|
30 |
5 3
|
cvlsupr6 |
|
31 |
30
|
necomd |
|
32 |
25 26 16 21 27 29 31
|
syl132anc |
|
33 |
1 2 3 4 5 6 7 8
|
4atexlemntlpq |
|
34 |
5 3
|
cvlsupr7 |
|
35 |
25 26 16 21 27 29 34
|
syl132anc |
|
36 |
3 5
|
hlatjcom |
|
37 |
15 16 21 36
|
syl3anc |
|
38 |
35 37
|
eqtr4d |
|
39 |
38
|
breq2d |
|
40 |
33 39
|
mtbid |
|
41 |
2 3 4 5
|
2llnma2 |
|
42 |
15 16 21 17 32 40 41
|
syl132anc |
|
43 |
24 42
|
eqtr2d |
|
44 |
43
|
adantr |
|
45 |
1
|
4atexlemkl |
|
46 |
1 3 5
|
4atexlemqtb |
|
47 |
1 3 5
|
4atexlempsb |
|
48 |
|
eqid |
|
49 |
48 2 4
|
latmle1 |
|
50 |
45 46 47 49
|
syl3anc |
|
51 |
9 50
|
eqbrtrid |
|
52 |
51
|
adantr |
|
53 |
|
simpr |
|
54 |
48 3 5
|
hlatjcl |
|
55 |
15 21 17 54
|
syl3anc |
|
56 |
48 2 4
|
latmle1 |
|
57 |
45 55 47 56
|
syl3anc |
|
58 |
10 57
|
eqbrtrid |
|
59 |
58
|
adantr |
|
60 |
53 59
|
eqbrtrd |
|
61 |
1 2 3 4 5 6 7 8 9
|
4atexlemc |
|
62 |
48 5
|
atbase |
|
63 |
61 62
|
syl |
|
64 |
48 2 4
|
latlem12 |
|
65 |
45 63 46 55 64
|
syl13anc |
|
66 |
65
|
adantr |
|
67 |
52 60 66
|
mpbi2and |
|
68 |
|
hlatl |
|
69 |
15 68
|
syl |
|
70 |
43 17
|
eqeltrrd |
|
71 |
2 5
|
atcmp |
|
72 |
69 61 70 71
|
syl3anc |
|
73 |
72
|
adantr |
|
74 |
67 73
|
mpbid |
|
75 |
44 74
|
eqtr4d |
|
76 |
75
|
ex |
|
77 |
76
|
necon3d |
|
78 |
14 77
|
mpd |
|