Metamath Proof Explorer


Theorem 5oalem5

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem5.1 AS
5oalem5.2 BS
5oalem5.3 CS
5oalem5.4 DS
5oalem5.5 FS
5oalem5.6 GS
5oalem5.7 RS
5oalem5.8 SS
Assertion 5oalem5 xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S

Proof

Step Hyp Ref Expression
1 5oalem5.1 AS
2 5oalem5.2 BS
3 5oalem5.3 CS
4 5oalem5.4 DS
5 5oalem5.5 FS
6 5oalem5.6 GS
7 5oalem5.7 RS
8 5oalem5.8 SS
9 simpr fFgGvRuSvRuS
10 9 anim2i xAyBzCwDfFgGvRuSxAyBzCwDvRuS
11 simpl x+y=v+uz+w=v+uf+g=v+ux+y=v+uz+w=v+u
12 1 2 3 4 7 8 5oalem4 xAyBzCwDvRuSx+y=v+uz+w=v+ux-zA+CB+DA+RB+S+C+RD+S
13 10 11 12 syl2an xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-zA+CB+DA+RB+S+C+RD+S
14 1 sheli xAx
15 14 adantr xAyBx
16 3 sheli zCz
17 16 adantr zCwDz
18 15 17 anim12i xAyBzCwDxz
19 5 sheli fFf
20 19 adantr fFgGf
21 hvsubsub4 xfzfx-f-z-f=x-z-f-f
22 21 anandirs xzfx-f-z-f=x-z-f-f
23 hvsubid ff-f=0
24 23 oveq2d fx-z-f-f=x-z-0
25 hvsubcl xzx-z
26 hvsub0 x-zx-z-0=x-z
27 25 26 syl xzx-z-0=x-z
28 24 27 sylan9eqr xzfx-z-f-f=x-z
29 22 28 eqtrd xzfx-f-z-f=x-z
30 18 20 29 syl2an xAyBzCwDfFgGx-f-z-f=x-z
31 30 adantrr xAyBzCwDfFgGvRuSx-f-z-f=x-z
32 31 adantr xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-f-z-f=x-z
33 simpl fFgGvRuSfFgG
34 33 anim2i xAyBzCwDfFgGvRuSxAyBzCwDfFgG
35 anandir xAyBzCwDfFgGxAyBfFgGzCwDfFgG
36 34 35 sylib xAyBzCwDfFgGvRuSxAyBfFgGzCwDfFgG
37 simprr xAyBzCwDfFgGvRuSvRuS
38 36 37 jca xAyBzCwDfFgGvRuSxAyBfFgGzCwDfFgGvRuS
39 simpl x+y=v+uz+w=v+ux+y=v+u
40 39 anim1i x+y=v+uz+w=v+uf+g=v+ux+y=v+uf+g=v+u
41 simpr x+y=v+uz+w=v+uz+w=v+u
42 41 anim1i x+y=v+uz+w=v+uf+g=v+uz+w=v+uf+g=v+u
43 40 42 jca x+y=v+uz+w=v+uf+g=v+ux+y=v+uf+g=v+uz+w=v+uf+g=v+u
44 anandir xAyBfFgGzCwDfFgGvRuSxAyBfFgGvRuSzCwDfFgGvRuS
45 1 2 5 6 7 8 5oalem4 xAyBfFgGvRuSx+y=v+uf+g=v+ux-fA+FB+GA+RB+S+F+RG+S
46 3 4 5 6 7 8 5oalem4 zCwDfFgGvRuSz+w=v+uf+g=v+uz-fC+FD+GC+RD+S+F+RG+S
47 45 46 anim12i xAyBfFgGvRuSx+y=v+uf+g=v+uzCwDfFgGvRuSz+w=v+uf+g=v+ux-fA+FB+GA+RB+S+F+RG+Sz-fC+FD+GC+RD+S+F+RG+S
48 47 an4s xAyBfFgGvRuSzCwDfFgGvRuSx+y=v+uf+g=v+uz+w=v+uf+g=v+ux-fA+FB+GA+RB+S+F+RG+Sz-fC+FD+GC+RD+S+F+RG+S
49 44 48 sylanb xAyBfFgGzCwDfFgGvRuSx+y=v+uf+g=v+uz+w=v+uf+g=v+ux-fA+FB+GA+RB+S+F+RG+Sz-fC+FD+GC+RD+S+F+RG+S
50 38 43 49 syl2an xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-fA+FB+GA+RB+S+F+RG+Sz-fC+FD+GC+RD+S+F+RG+S
51 1 5 shscli A+FS
52 2 6 shscli B+GS
53 51 52 shincli A+FB+GS
54 1 7 shscli A+RS
55 2 8 shscli B+SS
56 54 55 shincli A+RB+SS
57 5 7 shscli F+RS
58 6 8 shscli G+SS
59 57 58 shincli F+RG+SS
60 56 59 shscli A+RB+S+F+RG+SS
61 53 60 shincli A+FB+GA+RB+S+F+RG+SS
62 3 5 shscli C+FS
63 4 6 shscli D+GS
64 62 63 shincli C+FD+GS
65 3 7 shscli C+RS
66 4 8 shscli D+SS
67 65 66 shincli C+RD+SS
68 67 59 shscli C+RD+S+F+RG+SS
69 64 68 shincli C+FD+GC+RD+S+F+RG+SS
70 61 69 shsvsi x-fA+FB+GA+RB+S+F+RG+Sz-fC+FD+GC+RD+S+F+RG+Sx-f-z-fA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
71 50 70 syl xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-f-z-fA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
72 32 71 eqeltrrd xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-zA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
73 13 72 elind xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S