Description: The action F of extending function from B to C with new values at point I is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | actfunsn.1 | |
|
actfunsn.2 | |
||
actfunsn.3 | |
||
actfunsn.4 | |
||
actfunsn.5 | |
||
Assertion | actfunsnf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | actfunsn.1 | |
|
2 | actfunsn.2 | |
|
3 | actfunsn.3 | |
|
4 | actfunsn.4 | |
|
5 | actfunsn.5 | |
|
6 | uneq1 | |
|
7 | 6 | cbvmptv | |
8 | 5 7 | eqtri | |
9 | vex | |
|
10 | snex | |
|
11 | 9 10 | unex | |
12 | 11 | a1i | |
13 | vex | |
|
14 | 13 | resex | |
15 | 14 | a1i | |
16 | rspe | |
|
17 | 8 11 | elrnmpti | |
18 | 16 17 | sylibr | |
19 | 18 | adantll | |
20 | simpr | |
|
21 | 20 | reseq1d | |
22 | 1 | sselda | |
23 | elmapfn | |
|
24 | 22 23 | syl | |
25 | fnsng | |
|
26 | 3 25 | sylan | |
27 | 26 | adantr | |
28 | disjsn | |
|
29 | 4 28 | sylibr | |
30 | 29 | adantr | |
31 | 30 | adantr | |
32 | fnunres1 | |
|
33 | 24 27 31 32 | syl3anc | |
34 | 33 | adantr | |
35 | 21 34 | eqtr2d | |
36 | 19 35 | jca | |
37 | 36 | anasss | |
38 | simpr | |
|
39 | simpr | |
|
40 | 39 | reseq1d | |
41 | 1 | ad3antrrr | |
42 | simplr | |
|
43 | 41 42 | sseldd | |
44 | 43 23 | syl | |
45 | 3 | ad4antr | |
46 | simp-4r | |
|
47 | 45 46 25 | syl2anc | |
48 | 29 | ad4antr | |
49 | 44 47 48 32 | syl3anc | |
50 | 49 42 | eqeltrd | |
51 | 40 50 | eqeltrd | |
52 | simpr | |
|
53 | 52 17 | sylib | |
54 | 51 53 | r19.29a | |
55 | 54 | adantr | |
56 | 38 55 | eqeltrd | |
57 | 38 | uneq1d | |
58 | 40 49 | eqtrd | |
59 | 58 | uneq1d | |
60 | 59 39 | eqtr4d | |
61 | 60 53 | r19.29a | |
62 | 61 | adantr | |
63 | 57 62 | eqtr2d | |
64 | 56 63 | jca | |
65 | 64 | anasss | |
66 | 37 65 | impbida | |
67 | 8 12 15 66 | f1od | |