Metamath Proof Explorer


Theorem actfunsnf1o

Description: The action F of extending function from B to C with new values at point I is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021)

Ref Expression
Hypotheses actfunsn.1 φ k C A C B
actfunsn.2 φ C V
actfunsn.3 φ I V
actfunsn.4 φ ¬ I B
actfunsn.5 F = x A x I k
Assertion actfunsnf1o φ k C F : A 1-1 onto ran F

Proof

Step Hyp Ref Expression
1 actfunsn.1 φ k C A C B
2 actfunsn.2 φ C V
3 actfunsn.3 φ I V
4 actfunsn.4 φ ¬ I B
5 actfunsn.5 F = x A x I k
6 uneq1 x = z x I k = z I k
7 6 cbvmptv x A x I k = z A z I k
8 5 7 eqtri F = z A z I k
9 vex z V
10 snex I k V
11 9 10 unex z I k V
12 11 a1i φ k C z A z I k V
13 vex y V
14 13 resex y B V
15 14 a1i φ k C y ran F y B V
16 rspe z A y = z I k z A y = z I k
17 8 11 elrnmpti y ran F z A y = z I k
18 16 17 sylibr z A y = z I k y ran F
19 18 adantll φ k C z A y = z I k y ran F
20 simpr φ k C z A y = z I k y = z I k
21 20 reseq1d φ k C z A y = z I k y B = z I k B
22 1 sselda φ k C z A z C B
23 elmapfn z C B z Fn B
24 22 23 syl φ k C z A z Fn B
25 fnsng I V k C I k Fn I
26 3 25 sylan φ k C I k Fn I
27 26 adantr φ k C z A I k Fn I
28 disjsn B I = ¬ I B
29 4 28 sylibr φ B I =
30 29 adantr φ k C B I =
31 30 adantr φ k C z A B I =
32 fnunres1 z Fn B I k Fn I B I = z I k B = z
33 24 27 31 32 syl3anc φ k C z A z I k B = z
34 33 adantr φ k C z A y = z I k z I k B = z
35 21 34 eqtr2d φ k C z A y = z I k z = y B
36 19 35 jca φ k C z A y = z I k y ran F z = y B
37 36 anasss φ k C z A y = z I k y ran F z = y B
38 simpr φ k C y ran F z = y B z = y B
39 simpr φ k C y ran F z A y = z I k y = z I k
40 39 reseq1d φ k C y ran F z A y = z I k y B = z I k B
41 1 ad3antrrr φ k C y ran F z A y = z I k A C B
42 simplr φ k C y ran F z A y = z I k z A
43 41 42 sseldd φ k C y ran F z A y = z I k z C B
44 43 23 syl φ k C y ran F z A y = z I k z Fn B
45 3 ad4antr φ k C y ran F z A y = z I k I V
46 simp-4r φ k C y ran F z A y = z I k k C
47 45 46 25 syl2anc φ k C y ran F z A y = z I k I k Fn I
48 29 ad4antr φ k C y ran F z A y = z I k B I =
49 44 47 48 32 syl3anc φ k C y ran F z A y = z I k z I k B = z
50 49 42 eqeltrd φ k C y ran F z A y = z I k z I k B A
51 40 50 eqeltrd φ k C y ran F z A y = z I k y B A
52 simpr φ k C y ran F y ran F
53 52 17 sylib φ k C y ran F z A y = z I k
54 51 53 r19.29a φ k C y ran F y B A
55 54 adantr φ k C y ran F z = y B y B A
56 38 55 eqeltrd φ k C y ran F z = y B z A
57 38 uneq1d φ k C y ran F z = y B z I k = y B I k
58 40 49 eqtrd φ k C y ran F z A y = z I k y B = z
59 58 uneq1d φ k C y ran F z A y = z I k y B I k = z I k
60 59 39 eqtr4d φ k C y ran F z A y = z I k y B I k = y
61 60 53 r19.29a φ k C y ran F y B I k = y
62 61 adantr φ k C y ran F z = y B y B I k = y
63 57 62 eqtr2d φ k C y ran F z = y B y = z I k
64 56 63 jca φ k C y ran F z = y B z A y = z I k
65 64 anasss φ k C y ran F z = y B z A y = z I k
66 37 65 impbida φ k C z A y = z I k y ran F z = y B
67 8 12 15 66 f1od φ k C F : A 1-1 onto ran F