Metamath Proof Explorer


Theorem actfunsnf1o

Description: The action F of extending function from B to C with new values at point I is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021)

Ref Expression
Hypotheses actfunsn.1 φkCACB
actfunsn.2 φCV
actfunsn.3 φIV
actfunsn.4 φ¬IB
actfunsn.5 F=xAxIk
Assertion actfunsnf1o φkCF:A1-1 ontoranF

Proof

Step Hyp Ref Expression
1 actfunsn.1 φkCACB
2 actfunsn.2 φCV
3 actfunsn.3 φIV
4 actfunsn.4 φ¬IB
5 actfunsn.5 F=xAxIk
6 uneq1 x=zxIk=zIk
7 6 cbvmptv xAxIk=zAzIk
8 5 7 eqtri F=zAzIk
9 vex zV
10 snex IkV
11 9 10 unex zIkV
12 11 a1i φkCzAzIkV
13 vex yV
14 13 resex yBV
15 14 a1i φkCyranFyBV
16 rspe zAy=zIkzAy=zIk
17 8 11 elrnmpti yranFzAy=zIk
18 16 17 sylibr zAy=zIkyranF
19 18 adantll φkCzAy=zIkyranF
20 simpr φkCzAy=zIky=zIk
21 20 reseq1d φkCzAy=zIkyB=zIkB
22 1 sselda φkCzAzCB
23 elmapfn zCBzFnB
24 22 23 syl φkCzAzFnB
25 fnsng IVkCIkFnI
26 3 25 sylan φkCIkFnI
27 26 adantr φkCzAIkFnI
28 disjsn BI=¬IB
29 4 28 sylibr φBI=
30 29 adantr φkCBI=
31 30 adantr φkCzABI=
32 fnunres1 zFnBIkFnIBI=zIkB=z
33 24 27 31 32 syl3anc φkCzAzIkB=z
34 33 adantr φkCzAy=zIkzIkB=z
35 21 34 eqtr2d φkCzAy=zIkz=yB
36 19 35 jca φkCzAy=zIkyranFz=yB
37 36 anasss φkCzAy=zIkyranFz=yB
38 simpr φkCyranFz=yBz=yB
39 simpr φkCyranFzAy=zIky=zIk
40 39 reseq1d φkCyranFzAy=zIkyB=zIkB
41 1 ad3antrrr φkCyranFzAy=zIkACB
42 simplr φkCyranFzAy=zIkzA
43 41 42 sseldd φkCyranFzAy=zIkzCB
44 43 23 syl φkCyranFzAy=zIkzFnB
45 3 ad4antr φkCyranFzAy=zIkIV
46 simp-4r φkCyranFzAy=zIkkC
47 45 46 25 syl2anc φkCyranFzAy=zIkIkFnI
48 29 ad4antr φkCyranFzAy=zIkBI=
49 44 47 48 32 syl3anc φkCyranFzAy=zIkzIkB=z
50 49 42 eqeltrd φkCyranFzAy=zIkzIkBA
51 40 50 eqeltrd φkCyranFzAy=zIkyBA
52 simpr φkCyranFyranF
53 52 17 sylib φkCyranFzAy=zIk
54 51 53 r19.29a φkCyranFyBA
55 54 adantr φkCyranFz=yByBA
56 38 55 eqeltrd φkCyranFz=yBzA
57 38 uneq1d φkCyranFz=yBzIk=yBIk
58 40 49 eqtrd φkCyranFzAy=zIkyB=z
59 58 uneq1d φkCyranFzAy=zIkyBIk=zIk
60 59 39 eqtr4d φkCyranFzAy=zIkyBIk=y
61 60 53 r19.29a φkCyranFyBIk=y
62 61 adantr φkCyranFz=yByBIk=y
63 57 62 eqtr2d φkCyranFz=yBy=zIk
64 56 63 jca φkCyranFz=yBzAy=zIk
65 64 anasss φkCyranFz=yBzAy=zIk
66 37 65 impbida φkCzAy=zIkyranFz=yB
67 8 12 15 66 f1od φkCF:A1-1 ontoranF