Metamath Proof Explorer


Theorem affinecomb2

Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affinecomb1.a φA
affinecomb1.b φB
affinecomb1.c φC
affinecomb1.d φBC
affinecomb1.e φE
affinecomb1.f φF
affinecomb1.g φG
Assertion affinecomb2 φtA=1tB+tCE=1tF+tGCBE=GFA+FC-BG

Proof

Step Hyp Ref Expression
1 affinecomb1.a φA
2 affinecomb1.b φB
3 affinecomb1.c φC
4 affinecomb1.d φBC
5 affinecomb1.e φE
6 affinecomb1.f φF
7 affinecomb1.g φG
8 eqid GFCB=GFCB
9 1 2 3 4 5 6 7 8 affinecomb1 φtA=1tB+tCE=1tF+tGE=GFCBAB+F
10 5 recnd φE
11 7 recnd φG
12 6 recnd φF
13 11 12 subcld φGF
14 3 recnd φC
15 2 recnd φB
16 14 15 subcld φCB
17 4 necomd φCB
18 14 15 17 subne0d φCB0
19 13 16 18 divcld φGFCB
20 1 recnd φA
21 20 15 subcld φAB
22 19 21 mulcld φGFCBAB
23 22 12 addcld φGFCBAB+F
24 10 23 16 18 mulcand φCBE=CBGFCBAB+FE=GFCBAB+F
25 16 22 12 adddid φCBGFCBAB+F=CBGFCBAB+CBF
26 13 16 18 divcan2d φCBGFCB=GF
27 26 oveq1d φCBGFCBAB=GFAB
28 16 19 21 mulassd φCBGFCBAB=CBGFCBAB
29 13 20 15 subdid φGFAB=GFAGFB
30 27 28 29 3eqtr3d φCBGFCBAB=GFAGFB
31 14 15 12 subdird φCBF=CFBF
32 30 31 oveq12d φCBGFCBAB+CBF=GFAGFB+CF-BF
33 13 20 mulcld φGFA
34 13 15 mulcld φGFB
35 14 12 mulcld φCF
36 15 12 mulcld φBF
37 35 36 subcld φCFBF
38 33 34 37 subadd23d φGFAGFB+CF-BF=GFA+CFBF-GFB
39 32 38 eqtrd φCBGFCBAB+CBF=GFA+CFBF-GFB
40 14 12 mulcomd φCF=FC
41 15 12 mulcomd φBF=FB
42 40 41 oveq12d φCFBF=FCFB
43 11 12 15 subdird φGFB=GBFB
44 42 43 oveq12d φCF-BF-GFB=FC-FB-GBFB
45 12 14 mulcld φFC
46 11 15 mulcld φGB
47 12 15 mulcld φFB
48 45 46 47 nnncan2d φFC-FB-GBFB=FCGB
49 11 15 mulcomd φGB=BG
50 49 oveq2d φFCGB=FCBG
51 44 48 50 3eqtrd φCF-BF-GFB=FCBG
52 51 oveq2d φGFA+CFBF-GFB=GFA+FC-BG
53 25 39 52 3eqtrd φCBGFCBAB+F=GFA+FC-BG
54 53 eqeq2d φCBE=CBGFCBAB+FCBE=GFA+FC-BG
55 9 24 54 3bitr2d φtA=1tB+tCE=1tF+tGCBE=GFA+FC-BG