Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | affinecomb1.a | |
|
affinecomb1.b | |
||
affinecomb1.c | |
||
affinecomb1.d | |
||
affinecomb1.e | |
||
affinecomb1.f | |
||
affinecomb1.g | |
||
Assertion | affinecomb2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | affinecomb1.a | |
|
2 | affinecomb1.b | |
|
3 | affinecomb1.c | |
|
4 | affinecomb1.d | |
|
5 | affinecomb1.e | |
|
6 | affinecomb1.f | |
|
7 | affinecomb1.g | |
|
8 | eqid | |
|
9 | 1 2 3 4 5 6 7 8 | affinecomb1 | |
10 | 5 | recnd | |
11 | 7 | recnd | |
12 | 6 | recnd | |
13 | 11 12 | subcld | |
14 | 3 | recnd | |
15 | 2 | recnd | |
16 | 14 15 | subcld | |
17 | 4 | necomd | |
18 | 14 15 17 | subne0d | |
19 | 13 16 18 | divcld | |
20 | 1 | recnd | |
21 | 20 15 | subcld | |
22 | 19 21 | mulcld | |
23 | 22 12 | addcld | |
24 | 10 23 16 18 | mulcand | |
25 | 16 22 12 | adddid | |
26 | 13 16 18 | divcan2d | |
27 | 26 | oveq1d | |
28 | 16 19 21 | mulassd | |
29 | 13 20 15 | subdid | |
30 | 27 28 29 | 3eqtr3d | |
31 | 14 15 12 | subdird | |
32 | 30 31 | oveq12d | |
33 | 13 20 | mulcld | |
34 | 13 15 | mulcld | |
35 | 14 12 | mulcld | |
36 | 15 12 | mulcld | |
37 | 35 36 | subcld | |
38 | 33 34 37 | subadd23d | |
39 | 32 38 | eqtrd | |
40 | 14 12 | mulcomd | |
41 | 15 12 | mulcomd | |
42 | 40 41 | oveq12d | |
43 | 11 12 15 | subdird | |
44 | 42 43 | oveq12d | |
45 | 12 14 | mulcld | |
46 | 11 15 | mulcld | |
47 | 12 15 | mulcld | |
48 | 45 46 47 | nnncan2d | |
49 | 11 15 | mulcomd | |
50 | 49 | oveq2d | |
51 | 44 48 50 | 3eqtrd | |
52 | 51 | oveq2d | |
53 | 25 39 52 | 3eqtrd | |
54 | 53 | eqeq2d | |
55 | 9 24 54 | 3bitr2d | |