Metamath Proof Explorer


Theorem affinecomb2

Description: Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses affinecomb1.a φ A
affinecomb1.b φ B
affinecomb1.c φ C
affinecomb1.d φ B C
affinecomb1.e φ E
affinecomb1.f φ F
affinecomb1.g φ G
Assertion affinecomb2 φ t A = 1 t B + t C E = 1 t F + t G C B E = G F A + F C - B G

Proof

Step Hyp Ref Expression
1 affinecomb1.a φ A
2 affinecomb1.b φ B
3 affinecomb1.c φ C
4 affinecomb1.d φ B C
5 affinecomb1.e φ E
6 affinecomb1.f φ F
7 affinecomb1.g φ G
8 eqid G F C B = G F C B
9 1 2 3 4 5 6 7 8 affinecomb1 φ t A = 1 t B + t C E = 1 t F + t G E = G F C B A B + F
10 5 recnd φ E
11 7 recnd φ G
12 6 recnd φ F
13 11 12 subcld φ G F
14 3 recnd φ C
15 2 recnd φ B
16 14 15 subcld φ C B
17 4 necomd φ C B
18 14 15 17 subne0d φ C B 0
19 13 16 18 divcld φ G F C B
20 1 recnd φ A
21 20 15 subcld φ A B
22 19 21 mulcld φ G F C B A B
23 22 12 addcld φ G F C B A B + F
24 10 23 16 18 mulcand φ C B E = C B G F C B A B + F E = G F C B A B + F
25 16 22 12 adddid φ C B G F C B A B + F = C B G F C B A B + C B F
26 13 16 18 divcan2d φ C B G F C B = G F
27 26 oveq1d φ C B G F C B A B = G F A B
28 16 19 21 mulassd φ C B G F C B A B = C B G F C B A B
29 13 20 15 subdid φ G F A B = G F A G F B
30 27 28 29 3eqtr3d φ C B G F C B A B = G F A G F B
31 14 15 12 subdird φ C B F = C F B F
32 30 31 oveq12d φ C B G F C B A B + C B F = G F A G F B + C F - B F
33 13 20 mulcld φ G F A
34 13 15 mulcld φ G F B
35 14 12 mulcld φ C F
36 15 12 mulcld φ B F
37 35 36 subcld φ C F B F
38 33 34 37 subadd23d φ G F A G F B + C F - B F = G F A + C F B F - G F B
39 32 38 eqtrd φ C B G F C B A B + C B F = G F A + C F B F - G F B
40 14 12 mulcomd φ C F = F C
41 15 12 mulcomd φ B F = F B
42 40 41 oveq12d φ C F B F = F C F B
43 11 12 15 subdird φ G F B = G B F B
44 42 43 oveq12d φ C F - B F - G F B = F C - F B - G B F B
45 12 14 mulcld φ F C
46 11 15 mulcld φ G B
47 12 15 mulcld φ F B
48 45 46 47 nnncan2d φ F C - F B - G B F B = F C G B
49 11 15 mulcomd φ G B = B G
50 49 oveq2d φ F C G B = F C B G
51 44 48 50 3eqtrd φ C F - B F - G F B = F C B G
52 51 oveq2d φ G F A + C F B F - G F B = G F A + F C - B G
53 25 39 52 3eqtrd φ C B G F C B A B + F = G F A + F C - B G
54 53 eqeq2d φ C B E = C B G F C B A B + F C B E = G F A + F C - B G
55 9 24 54 3bitr2d φ t A = 1 t B + t C E = 1 t F + t G C B E = G F A + F C - B G