Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in Enderton p. 212 and definition of aleph in BellMachover p. 490 . (Contributed by NM, 16-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | alephval3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephcard | |
|
2 | 1 | a1i | |
3 | alephgeom | |
|
4 | 3 | biimpi | |
5 | alephord2i | |
|
6 | elirr | |
|
7 | eleq2 | |
|
8 | 6 7 | mtbiri | |
9 | 8 | con2i | |
10 | 5 9 | syl6 | |
11 | 10 | ralrimiv | |
12 | fvex | |
|
13 | fveq2 | |
|
14 | id | |
|
15 | 13 14 | eqeq12d | |
16 | sseq2 | |
|
17 | eqeq1 | |
|
18 | 17 | notbid | |
19 | 18 | ralbidv | |
20 | 15 16 19 | 3anbi123d | |
21 | 12 20 | elab | |
22 | 2 4 11 21 | syl3anbrc | |
23 | eleq1 | |
|
24 | alephord2 | |
|
25 | 24 | bicomd | |
26 | 23 25 | sylan9bbr | |
27 | 26 | biimpcd | |
28 | simpr | |
|
29 | 27 28 | jca2 | |
30 | 29 | exp4c | |
31 | 30 | com3r | |
32 | 31 | imp4b | |
33 | 32 | reximdv2 | |
34 | cardalephex | |
|
35 | 34 | biimpac | |
36 | 33 35 | impel | |
37 | dfrex2 | |
|
38 | 36 37 | sylib | |
39 | nan | |
|
40 | 38 39 | mpbir | |
41 | 40 | ex | |
42 | vex | |
|
43 | fveq2 | |
|
44 | id | |
|
45 | 43 44 | eqeq12d | |
46 | sseq2 | |
|
47 | eqeq1 | |
|
48 | 47 | notbid | |
49 | 48 | ralbidv | |
50 | 45 46 49 | 3anbi123d | |
51 | 42 50 | elab | |
52 | df-3an | |
|
53 | 51 52 | bitri | |
54 | 53 | notbii | |
55 | 41 54 | syl6ibr | |
56 | 55 | ralrimiv | |
57 | cardon | |
|
58 | eleq1 | |
|
59 | 57 58 | mpbii | |
60 | 59 | 3ad2ant1 | |
61 | 60 | abssi | |
62 | oneqmini | |
|
63 | 61 62 | ax-mp | |
64 | 22 56 63 | syl2anc | |