Metamath Proof Explorer


Theorem alephval3

Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in Enderton p. 212 and definition of aleph in BellMachover p. 490 . (Contributed by NM, 16-Nov-2003)

Ref Expression
Assertion alephval3 AOnA=x|cardx=xωxyA¬x=y

Proof

Step Hyp Ref Expression
1 alephcard cardA=A
2 1 a1i AOncardA=A
3 alephgeom AOnωA
4 3 biimpi AOnωA
5 alephord2i AOnyAyA
6 elirr ¬yy
7 eleq2 A=yyAyy
8 6 7 mtbiri A=y¬yA
9 8 con2i yA¬A=y
10 5 9 syl6 AOnyA¬A=y
11 10 ralrimiv AOnyA¬A=y
12 fvex AV
13 fveq2 x=Acardx=cardA
14 id x=Ax=A
15 13 14 eqeq12d x=Acardx=xcardA=A
16 sseq2 x=AωxωA
17 eqeq1 x=Ax=yA=y
18 17 notbid x=A¬x=y¬A=y
19 18 ralbidv x=AyA¬x=yyA¬A=y
20 15 16 19 3anbi123d x=Acardx=xωxyA¬x=ycardA=AωAyA¬A=y
21 12 20 elab Ax|cardx=xωxyA¬x=ycardA=AωAyA¬A=y
22 2 4 11 21 syl3anbrc AOnAx|cardx=xωxyA¬x=y
23 eleq1 z=yzAyA
24 alephord2 yOnAOnyAyA
25 24 bicomd yOnAOnyAyA
26 23 25 sylan9bbr yOnAOnz=yzAyA
27 26 biimpcd zAyOnAOnz=yyA
28 simpr yOnAOnz=yz=y
29 27 28 jca2 zAyOnAOnz=yyAz=y
30 29 exp4c zAyOnAOnz=yyAz=y
31 30 com3r AOnzAyOnz=yyAz=y
32 31 imp4b AOnzAyOnz=yyAz=y
33 32 reximdv2 AOnzAyOnz=yyAz=y
34 cardalephex ωzcardz=zyOnz=y
35 34 biimpac cardz=zωzyOnz=y
36 33 35 impel AOnzAcardz=zωzyAz=y
37 dfrex2 yAz=y¬yA¬z=y
38 36 37 sylib AOnzAcardz=zωz¬yA¬z=y
39 nan AOnzA¬cardz=zωzyA¬z=yAOnzAcardz=zωz¬yA¬z=y
40 38 39 mpbir AOnzA¬cardz=zωzyA¬z=y
41 40 ex AOnzA¬cardz=zωzyA¬z=y
42 vex zV
43 fveq2 x=zcardx=cardz
44 id x=zx=z
45 43 44 eqeq12d x=zcardx=xcardz=z
46 sseq2 x=zωxωz
47 eqeq1 x=zx=yz=y
48 47 notbid x=z¬x=y¬z=y
49 48 ralbidv x=zyA¬x=yyA¬z=y
50 45 46 49 3anbi123d x=zcardx=xωxyA¬x=ycardz=zωzyA¬z=y
51 42 50 elab zx|cardx=xωxyA¬x=ycardz=zωzyA¬z=y
52 df-3an cardz=zωzyA¬z=ycardz=zωzyA¬z=y
53 51 52 bitri zx|cardx=xωxyA¬x=ycardz=zωzyA¬z=y
54 53 notbii ¬zx|cardx=xωxyA¬x=y¬cardz=zωzyA¬z=y
55 41 54 syl6ibr AOnzA¬zx|cardx=xωxyA¬x=y
56 55 ralrimiv AOnzA¬zx|cardx=xωxyA¬x=y
57 cardon cardxOn
58 eleq1 cardx=xcardxOnxOn
59 57 58 mpbii cardx=xxOn
60 59 3ad2ant1 cardx=xωxyA¬x=yxOn
61 60 abssi x|cardx=xωxyA¬x=yOn
62 oneqmini x|cardx=xωxyA¬x=yOnAx|cardx=xωxyA¬x=yzA¬zx|cardx=xωxyA¬x=yA=x|cardx=xωxyA¬x=y
63 61 62 ax-mp Ax|cardx=xωxyA¬x=yzA¬zx|cardx=xωxyA¬x=yA=x|cardx=xωxyA¬x=y
64 22 56 63 syl2anc AOnA=x|cardx=xωxyA¬x=y