Description: Arithmetic-geometric mean inequality for n = 2 , derived from amgmlem . (Contributed by Stanislas Polu, 8-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | amgm2d.0 | |
|
amgm2d.1 | |
||
Assertion | amgm2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | amgm2d.0 | |
|
2 | amgm2d.1 | |
|
3 | eqid | |
|
4 | fzofi | |
|
5 | 4 | a1i | |
6 | 2nn | |
|
7 | lbfzo0 | |
|
8 | 6 7 | mpbir | |
9 | 8 | ne0ii | |
10 | 9 | a1i | |
11 | 1 2 | s2cld | |
12 | wrdf | |
|
13 | s2len | |
|
14 | 13 | eqcomi | |
15 | 14 | oveq2i | |
16 | 15 | feq2i | |
17 | 12 16 | sylibr | |
18 | 11 17 | syl | |
19 | 3 5 10 18 | amgmlem | |
20 | cnring | |
|
21 | 3 | ringmgp | |
22 | 20 21 | mp1i | |
23 | 1 | rpcnd | |
24 | 2 | rpcnd | |
25 | cnfldbas | |
|
26 | 3 25 | mgpbas | |
27 | cnfldmul | |
|
28 | 3 27 | mgpplusg | |
29 | 26 28 | gsumws2 | |
30 | 22 23 24 29 | syl3anc | |
31 | 2nn0 | |
|
32 | hashfzo0 | |
|
33 | 31 32 | mp1i | |
34 | 33 | oveq2d | |
35 | 30 34 | oveq12d | |
36 | ringmnd | |
|
37 | 20 36 | mp1i | |
38 | cnfldadd | |
|
39 | 25 38 | gsumws2 | |
40 | 37 23 24 39 | syl3anc | |
41 | 40 33 | oveq12d | |
42 | 19 35 41 | 3brtr3d | |