Metamath Proof Explorer


Theorem amgm2d

Description: Arithmetic-geometric mean inequality for n = 2 , derived from amgmlem . (Contributed by Stanislas Polu, 8-Sep-2020)

Ref Expression
Hypotheses amgm2d.0 φA+
amgm2d.1 φB+
Assertion amgm2d φAB12A+B2

Proof

Step Hyp Ref Expression
1 amgm2d.0 φA+
2 amgm2d.1 φB+
3 eqid mulGrpfld=mulGrpfld
4 fzofi 0..^2Fin
5 4 a1i φ0..^2Fin
6 2nn 2
7 lbfzo0 00..^22
8 6 7 mpbir 00..^2
9 8 ne0ii 0..^2
10 9 a1i φ0..^2
11 1 2 s2cld φ⟨“AB”⟩Word+
12 wrdf ⟨“AB”⟩Word+⟨“AB”⟩:0..^⟨“AB”⟩+
13 s2len ⟨“AB”⟩=2
14 13 eqcomi 2=⟨“AB”⟩
15 14 oveq2i 0..^2=0..^⟨“AB”⟩
16 15 feq2i ⟨“AB”⟩:0..^2+⟨“AB”⟩:0..^⟨“AB”⟩+
17 12 16 sylibr ⟨“AB”⟩Word+⟨“AB”⟩:0..^2+
18 11 17 syl φ⟨“AB”⟩:0..^2+
19 3 5 10 18 amgmlem φmulGrpfld⟨“AB”⟩10..^2fld⟨“AB”⟩0..^2
20 cnring fldRing
21 3 ringmgp fldRingmulGrpfldMnd
22 20 21 mp1i φmulGrpfldMnd
23 1 rpcnd φA
24 2 rpcnd φB
25 cnfldbas =Basefld
26 3 25 mgpbas =BasemulGrpfld
27 cnfldmul ×=fld
28 3 27 mgpplusg ×=+mulGrpfld
29 26 28 gsumws2 mulGrpfldMndABmulGrpfld⟨“AB”⟩=AB
30 22 23 24 29 syl3anc φmulGrpfld⟨“AB”⟩=AB
31 2nn0 20
32 hashfzo0 200..^2=2
33 31 32 mp1i φ0..^2=2
34 33 oveq2d φ10..^2=12
35 30 34 oveq12d φmulGrpfld⟨“AB”⟩10..^2=AB12
36 ringmnd fldRingfldMnd
37 20 36 mp1i φfldMnd
38 cnfldadd +=+fld
39 25 38 gsumws2 fldMndABfld⟨“AB”⟩=A+B
40 37 23 24 39 syl3anc φfld⟨“AB”⟩=A+B
41 40 33 oveq12d φfld⟨“AB”⟩0..^2=A+B2
42 19 35 41 3brtr3d φAB12A+B2