Step |
Hyp |
Ref |
Expression |
1 |
|
amgm3d.0 |
|
2 |
|
amgm3d.1 |
|
3 |
|
amgm3d.2 |
|
4 |
|
eqid |
|
5 |
|
fzofi |
|
6 |
5
|
a1i |
|
7 |
|
3nn |
|
8 |
|
lbfzo0 |
|
9 |
7 8
|
mpbir |
|
10 |
|
ne0i |
|
11 |
9 10
|
mp1i |
|
12 |
1 2 3
|
s3cld |
|
13 |
|
wrdf |
|
14 |
|
s3len |
|
15 |
|
df-3 |
|
16 |
14 15
|
eqtri |
|
17 |
16
|
oveq2i |
|
18 |
17
|
feq2i |
|
19 |
13 18
|
sylib |
|
20 |
15
|
oveq2i |
|
21 |
20
|
feq2i |
|
22 |
19 21
|
sylibr |
|
23 |
12 22
|
syl |
|
24 |
4 6 11 23
|
amgmlem |
|
25 |
|
cnring |
|
26 |
4
|
ringmgp |
|
27 |
25 26
|
mp1i |
|
28 |
1
|
rpcnd |
|
29 |
2
|
rpcnd |
|
30 |
3
|
rpcnd |
|
31 |
28 29 30
|
jca32 |
|
32 |
|
cnfldbas |
|
33 |
4 32
|
mgpbas |
|
34 |
|
cnfldmul |
|
35 |
4 34
|
mgpplusg |
|
36 |
33 35
|
gsumws3 |
|
37 |
27 31 36
|
syl2anc |
|
38 |
|
3nn0 |
|
39 |
|
hashfzo0 |
|
40 |
38 39
|
mp1i |
|
41 |
40
|
oveq2d |
|
42 |
37 41
|
oveq12d |
|
43 |
|
ringmnd |
|
44 |
25 43
|
mp1i |
|
45 |
|
cnfldadd |
|
46 |
32 45
|
gsumws3 |
|
47 |
44 31 46
|
syl2anc |
|
48 |
47 40
|
oveq12d |
|
49 |
24 42 48
|
3brtr3d |
|