Metamath Proof Explorer


Theorem amgm3d

Description: Arithmetic-geometric mean inequality for n = 3 . (Contributed by Stanislas Polu, 11-Sep-2020)

Ref Expression
Hypotheses amgm3d.0 φ A +
amgm3d.1 φ B +
amgm3d.2 φ C +
Assertion amgm3d φ A B C 1 3 A + B + C 3

Proof

Step Hyp Ref Expression
1 amgm3d.0 φ A +
2 amgm3d.1 φ B +
3 amgm3d.2 φ C +
4 eqid mulGrp fld = mulGrp fld
5 fzofi 0 ..^ 3 Fin
6 5 a1i φ 0 ..^ 3 Fin
7 3nn 3
8 lbfzo0 0 0 ..^ 3 3
9 7 8 mpbir 0 0 ..^ 3
10 ne0i 0 0 ..^ 3 0 ..^ 3
11 9 10 mp1i φ 0 ..^ 3
12 1 2 3 s3cld φ ⟨“ ABC ”⟩ Word +
13 wrdf ⟨“ ABC ”⟩ Word + ⟨“ ABC ”⟩ : 0 ..^ ⟨“ ABC ”⟩ +
14 s3len ⟨“ ABC ”⟩ = 3
15 df-3 3 = 2 + 1
16 14 15 eqtri ⟨“ ABC ”⟩ = 2 + 1
17 16 oveq2i 0 ..^ ⟨“ ABC ”⟩ = 0 ..^ 2 + 1
18 17 feq2i ⟨“ ABC ”⟩ : 0 ..^ ⟨“ ABC ”⟩ + ⟨“ ABC ”⟩ : 0 ..^ 2 + 1 +
19 13 18 sylib ⟨“ ABC ”⟩ Word + ⟨“ ABC ”⟩ : 0 ..^ 2 + 1 +
20 15 oveq2i 0 ..^ 3 = 0 ..^ 2 + 1
21 20 feq2i ⟨“ ABC ”⟩ : 0 ..^ 3 + ⟨“ ABC ”⟩ : 0 ..^ 2 + 1 +
22 19 21 sylibr ⟨“ ABC ”⟩ Word + ⟨“ ABC ”⟩ : 0 ..^ 3 +
23 12 22 syl φ ⟨“ ABC ”⟩ : 0 ..^ 3 +
24 4 6 11 23 amgmlem φ mulGrp fld ⟨“ ABC ”⟩ 1 0 ..^ 3 fld ⟨“ ABC ”⟩ 0 ..^ 3
25 cnring fld Ring
26 4 ringmgp fld Ring mulGrp fld Mnd
27 25 26 mp1i φ mulGrp fld Mnd
28 1 rpcnd φ A
29 2 rpcnd φ B
30 3 rpcnd φ C
31 28 29 30 jca32 φ A B C
32 cnfldbas = Base fld
33 4 32 mgpbas = Base mulGrp fld
34 cnfldmul × = fld
35 4 34 mgpplusg × = + mulGrp fld
36 33 35 gsumws3 mulGrp fld Mnd A B C mulGrp fld ⟨“ ABC ”⟩ = A B C
37 27 31 36 syl2anc φ mulGrp fld ⟨“ ABC ”⟩ = A B C
38 3nn0 3 0
39 hashfzo0 3 0 0 ..^ 3 = 3
40 38 39 mp1i φ 0 ..^ 3 = 3
41 40 oveq2d φ 1 0 ..^ 3 = 1 3
42 37 41 oveq12d φ mulGrp fld ⟨“ ABC ”⟩ 1 0 ..^ 3 = A B C 1 3
43 ringmnd fld Ring fld Mnd
44 25 43 mp1i φ fld Mnd
45 cnfldadd + = + fld
46 32 45 gsumws3 fld Mnd A B C fld ⟨“ ABC ”⟩ = A + B + C
47 44 31 46 syl2anc φ fld ⟨“ ABC ”⟩ = A + B + C
48 47 40 oveq12d φ fld ⟨“ ABC ”⟩ 0 ..^ 3 = A + B + C 3
49 24 42 48 3brtr3d φ A B C 1 3 A + B + C 3