Metamath Proof Explorer


Theorem atnle

Description: Two ways of expressing "an atom is not less than or equal to a lattice element." ( atnssm0 analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atnle.b B=BaseK
atnle.l ˙=K
atnle.m ˙=meetK
atnle.z 0˙=0.K
atnle.a A=AtomsK
Assertion atnle KAtLatPAXB¬P˙XP˙X=0˙

Proof

Step Hyp Ref Expression
1 atnle.b B=BaseK
2 atnle.l ˙=K
3 atnle.m ˙=meetK
4 atnle.z 0˙=0.K
5 atnle.a A=AtomsK
6 simpl1 KAtLatPAXBP˙X0˙KAtLat
7 atllat KAtLatKLat
8 7 3ad2ant1 KAtLatPAXBKLat
9 1 5 atbase PAPB
10 9 3ad2ant2 KAtLatPAXBPB
11 simp3 KAtLatPAXBXB
12 1 3 latmcl KLatPBXBP˙XB
13 8 10 11 12 syl3anc KAtLatPAXBP˙XB
14 13 adantr KAtLatPAXBP˙X0˙P˙XB
15 simpr KAtLatPAXBP˙X0˙P˙X0˙
16 1 2 4 5 atlex KAtLatP˙XBP˙X0˙yAy˙P˙X
17 6 14 15 16 syl3anc KAtLatPAXBP˙X0˙yAy˙P˙X
18 simpl1 KAtLatPAXByAKAtLat
19 18 7 syl KAtLatPAXByAKLat
20 1 5 atbase yAyB
21 20 adantl KAtLatPAXByAyB
22 simpl2 KAtLatPAXByAPA
23 22 9 syl KAtLatPAXByAPB
24 simpl3 KAtLatPAXByAXB
25 1 2 3 latlem12 KLatyBPBXBy˙Py˙Xy˙P˙X
26 19 21 23 24 25 syl13anc KAtLatPAXByAy˙Py˙Xy˙P˙X
27 simpr KAtLatPAXByAyA
28 2 5 atcmp KAtLatyAPAy˙Py=P
29 18 27 22 28 syl3anc KAtLatPAXByAy˙Py=P
30 breq1 y=Py˙XP˙X
31 30 biimpd y=Py˙XP˙X
32 29 31 syl6bi KAtLatPAXByAy˙Py˙XP˙X
33 32 impd KAtLatPAXByAy˙Py˙XP˙X
34 26 33 sylbird KAtLatPAXByAy˙P˙XP˙X
35 34 adantlr KAtLatPAXBP˙X0˙yAy˙P˙XP˙X
36 35 rexlimdva KAtLatPAXBP˙X0˙yAy˙P˙XP˙X
37 17 36 mpd KAtLatPAXBP˙X0˙P˙X
38 37 ex KAtLatPAXBP˙X0˙P˙X
39 38 necon1bd KAtLatPAXB¬P˙XP˙X=0˙
40 4 5 atn0 KAtLatPAP0˙
41 40 3adant3 KAtLatPAXBP0˙
42 1 2 3 latleeqm1 KLatPBXBP˙XP˙X=P
43 8 10 11 42 syl3anc KAtLatPAXBP˙XP˙X=P
44 43 adantr KAtLatPAXBP˙X=0˙P˙XP˙X=P
45 eqeq1 P˙X=PP˙X=0˙P=0˙
46 45 biimpcd P˙X=0˙P˙X=PP=0˙
47 46 adantl KAtLatPAXBP˙X=0˙P˙X=PP=0˙
48 44 47 sylbid KAtLatPAXBP˙X=0˙P˙XP=0˙
49 48 necon3ad KAtLatPAXBP˙X=0˙P0˙¬P˙X
50 49 ex KAtLatPAXBP˙X=0˙P0˙¬P˙X
51 41 50 mpid KAtLatPAXBP˙X=0˙¬P˙X
52 39 51 impbid KAtLatPAXB¬P˙XP˙X=0˙