Description: Two ways of expressing "an atom is not less than or equal to a lattice element." ( atnssm0 analog.) (Contributed by NM, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atnle.b | |
|
atnle.l | |
||
atnle.m | |
||
atnle.z | |
||
atnle.a | |
||
Assertion | atnle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atnle.b | |
|
2 | atnle.l | |
|
3 | atnle.m | |
|
4 | atnle.z | |
|
5 | atnle.a | |
|
6 | simpl1 | |
|
7 | atllat | |
|
8 | 7 | 3ad2ant1 | |
9 | 1 5 | atbase | |
10 | 9 | 3ad2ant2 | |
11 | simp3 | |
|
12 | 1 3 | latmcl | |
13 | 8 10 11 12 | syl3anc | |
14 | 13 | adantr | |
15 | simpr | |
|
16 | 1 2 4 5 | atlex | |
17 | 6 14 15 16 | syl3anc | |
18 | simpl1 | |
|
19 | 18 7 | syl | |
20 | 1 5 | atbase | |
21 | 20 | adantl | |
22 | simpl2 | |
|
23 | 22 9 | syl | |
24 | simpl3 | |
|
25 | 1 2 3 | latlem12 | |
26 | 19 21 23 24 25 | syl13anc | |
27 | simpr | |
|
28 | 2 5 | atcmp | |
29 | 18 27 22 28 | syl3anc | |
30 | breq1 | |
|
31 | 30 | biimpd | |
32 | 29 31 | syl6bi | |
33 | 32 | impd | |
34 | 26 33 | sylbird | |
35 | 34 | adantlr | |
36 | 35 | rexlimdva | |
37 | 17 36 | mpd | |
38 | 37 | ex | |
39 | 38 | necon1bd | |
40 | 4 5 | atn0 | |
41 | 40 | 3adant3 | |
42 | 1 2 3 | latleeqm1 | |
43 | 8 10 11 42 | syl3anc | |
44 | 43 | adantr | |
45 | eqeq1 | |
|
46 | 45 | biimpcd | |
47 | 46 | adantl | |
48 | 44 47 | sylbid | |
49 | 48 | necon3ad | |
50 | 49 | ex | |
51 | 41 50 | mpid | |
52 | 39 51 | impbid | |