| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atnle.b |  | 
						
							| 2 |  | atnle.l |  | 
						
							| 3 |  | atnle.m |  | 
						
							| 4 |  | atnle.z |  | 
						
							| 5 |  | atnle.a |  | 
						
							| 6 |  | simpl1 |  | 
						
							| 7 |  | atllat |  | 
						
							| 8 | 7 | 3ad2ant1 |  | 
						
							| 9 | 1 5 | atbase |  | 
						
							| 10 | 9 | 3ad2ant2 |  | 
						
							| 11 |  | simp3 |  | 
						
							| 12 | 1 3 | latmcl |  | 
						
							| 13 | 8 10 11 12 | syl3anc |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 1 2 4 5 | atlex |  | 
						
							| 17 | 6 14 15 16 | syl3anc |  | 
						
							| 18 |  | simpl1 |  | 
						
							| 19 | 18 7 | syl |  | 
						
							| 20 | 1 5 | atbase |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 | 22 9 | syl |  | 
						
							| 24 |  | simpl3 |  | 
						
							| 25 | 1 2 3 | latlem12 |  | 
						
							| 26 | 19 21 23 24 25 | syl13anc |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 2 5 | atcmp |  | 
						
							| 29 | 18 27 22 28 | syl3anc |  | 
						
							| 30 |  | breq1 |  | 
						
							| 31 | 30 | biimpd |  | 
						
							| 32 | 29 31 | biimtrdi |  | 
						
							| 33 | 32 | impd |  | 
						
							| 34 | 26 33 | sylbird |  | 
						
							| 35 | 34 | adantlr |  | 
						
							| 36 | 35 | rexlimdva |  | 
						
							| 37 | 17 36 | mpd |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 38 | necon1bd |  | 
						
							| 40 | 4 5 | atn0 |  | 
						
							| 41 | 40 | 3adant3 |  | 
						
							| 42 | 1 2 3 | latleeqm1 |  | 
						
							| 43 | 8 10 11 42 | syl3anc |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 |  | eqeq1 |  | 
						
							| 46 | 45 | biimpcd |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 44 47 | sylbid |  | 
						
							| 49 | 48 | necon3ad |  | 
						
							| 50 | 49 | ex |  | 
						
							| 51 | 41 50 | mpid |  | 
						
							| 52 | 39 51 | impbid |  |