Metamath Proof Explorer


Theorem axrnegex

Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axrnegex AxA+x=0

Proof

Step Hyp Ref Expression
1 elreal2 A1stA𝑹A=1stA0𝑹
2 1 simplbi A1stA𝑹
3 m1r -1𝑹𝑹
4 mulclsr 1stA𝑹-1𝑹𝑹1stA𝑹-1𝑹𝑹
5 2 3 4 sylancl A1stA𝑹-1𝑹𝑹
6 opelreal 1stA𝑹-1𝑹0𝑹1stA𝑹-1𝑹𝑹
7 5 6 sylibr A1stA𝑹-1𝑹0𝑹
8 1 simprbi AA=1stA0𝑹
9 8 oveq1d AA+1stA𝑹-1𝑹0𝑹=1stA0𝑹+1stA𝑹-1𝑹0𝑹
10 addresr 1stA𝑹1stA𝑹-1𝑹𝑹1stA0𝑹+1stA𝑹-1𝑹0𝑹=1stA+𝑹1stA𝑹-1𝑹0𝑹
11 2 5 10 syl2anc A1stA0𝑹+1stA𝑹-1𝑹0𝑹=1stA+𝑹1stA𝑹-1𝑹0𝑹
12 pn0sr 1stA𝑹1stA+𝑹1stA𝑹-1𝑹=0𝑹
13 12 opeq1d 1stA𝑹1stA+𝑹1stA𝑹-1𝑹0𝑹=0𝑹0𝑹
14 df-0 0=0𝑹0𝑹
15 13 14 eqtr4di 1stA𝑹1stA+𝑹1stA𝑹-1𝑹0𝑹=0
16 2 15 syl A1stA+𝑹1stA𝑹-1𝑹0𝑹=0
17 9 11 16 3eqtrd AA+1stA𝑹-1𝑹0𝑹=0
18 oveq2 x=1stA𝑹-1𝑹0𝑹A+x=A+1stA𝑹-1𝑹0𝑹
19 18 eqeq1d x=1stA𝑹-1𝑹0𝑹A+x=0A+1stA𝑹-1𝑹0𝑹=0
20 19 rspcev 1stA𝑹-1𝑹0𝑹A+1stA𝑹-1𝑹0𝑹=0xA+x=0
21 7 17 20 syl2anc AxA+x=0