| Step |
Hyp |
Ref |
Expression |
| 1 |
|
baerlem3.v |
|
| 2 |
|
baerlem3.m |
|
| 3 |
|
baerlem3.o |
|
| 4 |
|
baerlem3.s |
|
| 5 |
|
baerlem3.n |
|
| 6 |
|
baerlem3.w |
|
| 7 |
|
baerlem3.x |
|
| 8 |
|
baerlem3.c |
|
| 9 |
|
baerlem3.d |
|
| 10 |
|
baerlem3.y |
|
| 11 |
|
baerlem3.z |
|
| 12 |
|
baerlem3.p |
|
| 13 |
|
baerlem3.t |
|
| 14 |
|
baerlem3.r |
|
| 15 |
|
baerlem3.b |
|
| 16 |
|
baerlem3.a |
|
| 17 |
|
baerlem3.l |
|
| 18 |
|
baerlem3.q |
|
| 19 |
|
baerlem3.i |
|
| 20 |
|
lveclmod |
|
| 21 |
6 20
|
syl |
|
| 22 |
10
|
eldifad |
|
| 23 |
11
|
eldifad |
|
| 24 |
1 2 4 5
|
lspsntrim |
|
| 25 |
21 22 23 24
|
syl3anc |
|
| 26 |
1 2 5 21 22 23
|
lspsnsub |
|
| 27 |
|
lmodabl |
|
| 28 |
21 27
|
syl |
|
| 29 |
1 2 28 7 22 23
|
ablnnncan1 |
|
| 30 |
29
|
sneqd |
|
| 31 |
30
|
fveq2d |
|
| 32 |
26 31
|
eqtr4d |
|
| 33 |
1 2
|
lmodvsubcl |
|
| 34 |
21 7 22 33
|
syl3anc |
|
| 35 |
1 2
|
lmodvsubcl |
|
| 36 |
21 7 23 35
|
syl3anc |
|
| 37 |
1 2 4 5
|
lspsntrim |
|
| 38 |
21 34 36 37
|
syl3anc |
|
| 39 |
32 38
|
eqsstrd |
|
| 40 |
25 39
|
ssind |
|
| 41 |
|
elin |
|
| 42 |
1 12 14 15 13 4 5 21 22 23
|
lsmspsn |
|
| 43 |
1 12 14 15 13 4 5 21 34 36
|
lsmspsn |
|
| 44 |
42 43
|
anbi12d |
|
| 45 |
41 44
|
bitrid |
|
| 46 |
|
simp11 |
|
| 47 |
46 6
|
syl |
|
| 48 |
46 7
|
syl |
|
| 49 |
46 8
|
syl |
|
| 50 |
46 9
|
syl |
|
| 51 |
46 10
|
syl |
|
| 52 |
46 11
|
syl |
|
| 53 |
|
simp12l |
|
| 54 |
|
simp12r |
|
| 55 |
|
simp2l |
|
| 56 |
|
simp2r |
|
| 57 |
|
simp13 |
|
| 58 |
|
simp3 |
|
| 59 |
1 2 3 4 5 47 48 49 50 51 52 12 13 14 15 16 17 18 19 53 54 55 56 57 58
|
baerlem3lem1 |
|
| 60 |
46 21
|
syl |
|
| 61 |
1 2
|
lmodvsubcl |
|
| 62 |
21 22 23 61
|
syl3anc |
|
| 63 |
46 62
|
syl |
|
| 64 |
1 13 14 15 5 60 53 63
|
ellspsni |
|
| 65 |
59 64
|
eqeltrd |
|
| 66 |
65
|
3exp |
|
| 67 |
66
|
rexlimdvv |
|
| 68 |
67
|
3exp |
|
| 69 |
68
|
rexlimdvv |
|
| 70 |
69
|
impd |
|
| 71 |
45 70
|
sylbid |
|
| 72 |
71
|
ssrdv |
|
| 73 |
40 72
|
eqssd |
|