Step |
Hyp |
Ref |
Expression |
1 |
|
baerlem3.v |
|
2 |
|
baerlem3.m |
|
3 |
|
baerlem3.o |
|
4 |
|
baerlem3.s |
|
5 |
|
baerlem3.n |
|
6 |
|
baerlem3.w |
|
7 |
|
baerlem3.x |
|
8 |
|
baerlem3.c |
|
9 |
|
baerlem3.d |
|
10 |
|
baerlem3.y |
|
11 |
|
baerlem3.z |
|
12 |
|
baerlem3.p |
|
13 |
|
baerlem3.t |
|
14 |
|
baerlem3.r |
|
15 |
|
baerlem3.b |
|
16 |
|
baerlem3.a |
|
17 |
|
baerlem3.l |
|
18 |
|
baerlem3.q |
|
19 |
|
baerlem3.i |
|
20 |
|
lveclmod |
|
21 |
6 20
|
syl |
|
22 |
10
|
eldifad |
|
23 |
11
|
eldifad |
|
24 |
1 2 4 5
|
lspsntrim |
|
25 |
21 22 23 24
|
syl3anc |
|
26 |
1 2 5 21 22 23
|
lspsnsub |
|
27 |
|
lmodabl |
|
28 |
21 27
|
syl |
|
29 |
1 2 28 7 22 23
|
ablnnncan1 |
|
30 |
29
|
sneqd |
|
31 |
30
|
fveq2d |
|
32 |
26 31
|
eqtr4d |
|
33 |
1 2
|
lmodvsubcl |
|
34 |
21 7 22 33
|
syl3anc |
|
35 |
1 2
|
lmodvsubcl |
|
36 |
21 7 23 35
|
syl3anc |
|
37 |
1 2 4 5
|
lspsntrim |
|
38 |
21 34 36 37
|
syl3anc |
|
39 |
32 38
|
eqsstrd |
|
40 |
25 39
|
ssind |
|
41 |
|
elin |
|
42 |
1 12 14 15 13 4 5 21 22 23
|
lsmspsn |
|
43 |
1 12 14 15 13 4 5 21 34 36
|
lsmspsn |
|
44 |
42 43
|
anbi12d |
|
45 |
41 44
|
syl5bb |
|
46 |
|
simp11 |
|
47 |
46 6
|
syl |
|
48 |
46 7
|
syl |
|
49 |
46 8
|
syl |
|
50 |
46 9
|
syl |
|
51 |
46 10
|
syl |
|
52 |
46 11
|
syl |
|
53 |
|
simp12l |
|
54 |
|
simp12r |
|
55 |
|
simp2l |
|
56 |
|
simp2r |
|
57 |
|
simp13 |
|
58 |
|
simp3 |
|
59 |
1 2 3 4 5 47 48 49 50 51 52 12 13 14 15 16 17 18 19 53 54 55 56 57 58
|
baerlem3lem1 |
|
60 |
46 21
|
syl |
|
61 |
1 2
|
lmodvsubcl |
|
62 |
21 22 23 61
|
syl3anc |
|
63 |
46 62
|
syl |
|
64 |
1 13 14 15 5 60 53 63
|
lspsneli |
|
65 |
59 64
|
eqeltrd |
|
66 |
65
|
3exp |
|
67 |
66
|
rexlimdvv |
|
68 |
67
|
3exp |
|
69 |
68
|
rexlimdvv |
|
70 |
69
|
impd |
|
71 |
45 70
|
sylbid |
|
72 |
71
|
ssrdv |
|
73 |
40 72
|
eqssd |
|