Metamath Proof Explorer


Theorem baerlem3lem2

Description: Lemma for baerlem3 . (Contributed by NM, 9-Apr-2015)

Ref Expression
Hypotheses baerlem3.v V=BaseW
baerlem3.m -˙=-W
baerlem3.o 0˙=0W
baerlem3.s ˙=LSSumW
baerlem3.n N=LSpanW
baerlem3.w φWLVec
baerlem3.x φXV
baerlem3.c φ¬XNYZ
baerlem3.d φNYNZ
baerlem3.y φYV0˙
baerlem3.z φZV0˙
baerlem3.p +˙=+W
baerlem3.t ·˙=W
baerlem3.r R=ScalarW
baerlem3.b B=BaseR
baerlem3.a ˙=+R
baerlem3.l L=-R
baerlem3.q Q=0R
baerlem3.i I=invgR
Assertion baerlem3lem2 φNY-˙Z=NY˙NZNX-˙Y˙NX-˙Z

Proof

Step Hyp Ref Expression
1 baerlem3.v V=BaseW
2 baerlem3.m -˙=-W
3 baerlem3.o 0˙=0W
4 baerlem3.s ˙=LSSumW
5 baerlem3.n N=LSpanW
6 baerlem3.w φWLVec
7 baerlem3.x φXV
8 baerlem3.c φ¬XNYZ
9 baerlem3.d φNYNZ
10 baerlem3.y φYV0˙
11 baerlem3.z φZV0˙
12 baerlem3.p +˙=+W
13 baerlem3.t ·˙=W
14 baerlem3.r R=ScalarW
15 baerlem3.b B=BaseR
16 baerlem3.a ˙=+R
17 baerlem3.l L=-R
18 baerlem3.q Q=0R
19 baerlem3.i I=invgR
20 lveclmod WLVecWLMod
21 6 20 syl φWLMod
22 10 eldifad φYV
23 11 eldifad φZV
24 1 2 4 5 lspsntrim WLModYVZVNY-˙ZNY˙NZ
25 21 22 23 24 syl3anc φNY-˙ZNY˙NZ
26 1 2 5 21 22 23 lspsnsub φNY-˙Z=NZ-˙Y
27 lmodabl WLModWAbel
28 21 27 syl φWAbel
29 1 2 28 7 22 23 ablnnncan1 φX-˙Y-˙X-˙Z=Z-˙Y
30 29 sneqd φX-˙Y-˙X-˙Z=Z-˙Y
31 30 fveq2d φNX-˙Y-˙X-˙Z=NZ-˙Y
32 26 31 eqtr4d φNY-˙Z=NX-˙Y-˙X-˙Z
33 1 2 lmodvsubcl WLModXVYVX-˙YV
34 21 7 22 33 syl3anc φX-˙YV
35 1 2 lmodvsubcl WLModXVZVX-˙ZV
36 21 7 23 35 syl3anc φX-˙ZV
37 1 2 4 5 lspsntrim WLModX-˙YVX-˙ZVNX-˙Y-˙X-˙ZNX-˙Y˙NX-˙Z
38 21 34 36 37 syl3anc φNX-˙Y-˙X-˙ZNX-˙Y˙NX-˙Z
39 32 38 eqsstrd φNY-˙ZNX-˙Y˙NX-˙Z
40 25 39 ssind φNY-˙ZNY˙NZNX-˙Y˙NX-˙Z
41 elin jNY˙NZNX-˙Y˙NX-˙ZjNY˙NZjNX-˙Y˙NX-˙Z
42 1 12 14 15 13 4 5 21 22 23 lsmspsn φjNY˙NZaBbBj=a·˙Y+˙b·˙Z
43 1 12 14 15 13 4 5 21 34 36 lsmspsn φjNX-˙Y˙NX-˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Z
44 42 43 anbi12d φjNY˙NZjNX-˙Y˙NX-˙ZaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Z
45 41 44 bitrid φjNY˙NZNX-˙Y˙NX-˙ZaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Z
46 simp11 φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Zφ
47 46 6 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZWLVec
48 46 7 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZXV
49 46 8 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Z¬XNYZ
50 46 9 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZNYNZ
51 46 10 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZYV0˙
52 46 11 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZZV0˙
53 simp12l φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZaB
54 simp12r φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZbB
55 simp2l φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZdB
56 simp2r φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZeB
57 simp13 φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Zj=a·˙Y+˙b·˙Z
58 simp3 φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Zj=d·˙X-˙Y+˙e·˙X-˙Z
59 1 2 3 4 5 47 48 49 50 51 52 12 13 14 15 16 17 18 19 53 54 55 56 57 58 baerlem3lem1 φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Zj=a·˙Y-˙Z
60 46 21 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZWLMod
61 1 2 lmodvsubcl WLModYVZVY-˙ZV
62 21 22 23 61 syl3anc φY-˙ZV
63 46 62 syl φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZY-˙ZV
64 1 13 14 15 5 60 53 63 lspsneli φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙Za·˙Y-˙ZNY-˙Z
65 59 64 eqeltrd φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZjNY-˙Z
66 65 3exp φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZjNY-˙Z
67 66 rexlimdvv φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZjNY-˙Z
68 67 3exp φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZjNY-˙Z
69 68 rexlimdvv φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZjNY-˙Z
70 69 impd φaBbBj=a·˙Y+˙b·˙ZdBeBj=d·˙X-˙Y+˙e·˙X-˙ZjNY-˙Z
71 45 70 sylbid φjNY˙NZNX-˙Y˙NX-˙ZjNY-˙Z
72 71 ssrdv φNY˙NZNX-˙Y˙NX-˙ZNY-˙Z
73 40 72 eqssd φNY-˙Z=NY˙NZNX-˙Y˙NX-˙Z