Metamath Proof Explorer


Theorem ballotlemi1

Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
Assertion ballotlemi1 COE¬1CIC1

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 0re 0
10 1re 1
11 9 10 resubcli 01
12 0lt1 0<1
13 ltsub23 01001<000<1
14 9 10 9 13 mp3an 01<000<1
15 0m0e0 00=0
16 15 breq1i 00<10<1
17 14 16 bitr2i 0<101<0
18 12 17 mpbi 01<0
19 11 18 gtneii 001
20 19 nesymi ¬01=0
21 eldifi COECO
22 1nn 1
23 22 a1i COE1
24 1 2 3 4 5 21 23 ballotlemfp1 COE¬1CFC1=FC1111CFC1=FC11+1
25 24 simpld COE¬1CFC1=FC111
26 25 imp COE¬1CFC1=FC111
27 1m1e0 11=0
28 27 fveq2i FC11=FC0
29 28 oveq1i FC111=FC01
30 29 a1i COE¬1CFC111=FC01
31 1 2 3 4 5 ballotlemfval0 COFC0=0
32 21 31 syl COEFC0=0
33 32 adantr COE¬1CFC0=0
34 33 oveq1d COE¬1CFC01=01
35 26 30 34 3eqtrrd COE¬1C01=FC1
36 35 eqeq1d COE¬1C01=0FC1=0
37 20 36 mtbii COE¬1C¬FC1=0
38 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
39 38 simprd COEFCIC=0
40 39 ad2antrr COE¬1CIC=1FCIC=0
41 fveqeq2 IC=1FCIC=0FC1=0
42 41 adantl COE¬1CIC=1FCIC=0FC1=0
43 40 42 mpbid COE¬1CIC=1FC1=0
44 37 43 mtand COE¬1C¬IC=1
45 44 neqned COE¬1CIC1