Metamath Proof Explorer


Theorem ballotlemodife

Description: Elements of ( O \ E ) . (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
Assertion ballotlemodife COECOi1M+NFCi0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 eldif COECO¬CE
8 df-or CO¬COCO¬i1M+N0<FCi¬CO¬COCO¬i1M+N0<FCi
9 pm3.24 ¬CO¬CO
10 9 a1bi CO¬i1M+N0<FCi¬CO¬COCO¬i1M+N0<FCi
11 8 10 bitr4i CO¬COCO¬i1M+N0<FCiCO¬i1M+N0<FCi
12 1 2 3 4 5 6 ballotleme CECOi1M+N0<FCi
13 12 notbii ¬CE¬COi1M+N0<FCi
14 13 anbi2i CO¬CECO¬COi1M+N0<FCi
15 ianor ¬COi1M+N0<FCi¬CO¬i1M+N0<FCi
16 15 anbi2i CO¬COi1M+N0<FCiCO¬CO¬i1M+N0<FCi
17 andi CO¬CO¬i1M+N0<FCiCO¬COCO¬i1M+N0<FCi
18 14 16 17 3bitri CO¬CECO¬COCO¬i1M+N0<FCi
19 fz1ssfz0 1M+N0M+N
20 19 a1i CO1M+N0M+N
21 20 sseld COi1M+Ni0M+N
22 21 imdistani COi1M+NCOi0M+N
23 simpl COj0M+NCO
24 elfzelz j0M+Nj
25 24 adantl COj0M+Nj
26 1 2 3 4 5 23 25 ballotlemfelz COj0M+NFCj
27 26 zred COj0M+NFCj
28 27 sbimi ijCOj0M+NijFCj
29 sban ijCOj0M+NijCOijj0M+N
30 sbv ijCOCO
31 clelsb1 ijj0M+Ni0M+N
32 30 31 anbi12i ijCOijj0M+NCOi0M+N
33 29 32 bitri ijCOj0M+NCOi0M+N
34 nfv jFCi
35 fveq2 j=iFCj=FCi
36 35 eleq1d j=iFCjFCi
37 34 36 sbiev ijFCjFCi
38 28 33 37 3imtr3i COi0M+NFCi
39 22 38 syl COi1M+NFCi
40 0red COi1M+N0
41 39 40 lenltd COi1M+NFCi0¬0<FCi
42 41 rexbidva COi1M+NFCi0i1M+N¬0<FCi
43 rexnal i1M+N¬0<FCi¬i1M+N0<FCi
44 42 43 bitrdi COi1M+NFCi0¬i1M+N0<FCi
45 44 pm5.32i COi1M+NFCi0CO¬i1M+N0<FCi
46 11 18 45 3bitr4i CO¬CECOi1M+NFCi0
47 7 46 bitri COECOi1M+NFCi0