| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bezoutr |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 | 2 3 | breqtrd |  | 
						
							| 5 |  | gcdcl |  | 
						
							| 6 | 5 | nn0zd |  | 
						
							| 7 | 6 | ad2antrr |  | 
						
							| 8 |  | 1nn |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 |  | dvdsle |  | 
						
							| 11 | 7 9 10 | syl2anc |  | 
						
							| 12 | 4 11 | mpd |  | 
						
							| 13 |  | simpll |  | 
						
							| 14 |  | oveq1 |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 14 15 | oveqan12d |  | 
						
							| 17 |  | zcn |  | 
						
							| 18 | 17 | mul02d |  | 
						
							| 19 |  | zcn |  | 
						
							| 20 | 19 | mul02d |  | 
						
							| 21 | 18 20 | oveqan12d |  | 
						
							| 22 | 16 21 | sylan9eqr |  | 
						
							| 23 |  | 00id |  | 
						
							| 24 | 22 23 | eqtrdi |  | 
						
							| 25 | 24 | adantll |  | 
						
							| 26 |  | 0ne1 |  | 
						
							| 27 | 26 | a1i |  | 
						
							| 28 | 25 27 | eqnetrd |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 29 | necon2bd |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 |  | gcdn0cl |  | 
						
							| 33 | 13 31 32 | syl2anc |  | 
						
							| 34 |  | nnle1eq1 |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 12 35 | mpbid |  | 
						
							| 37 | 36 | ex |  |