Metamath Proof Explorer


Theorem bezoutr1

Description: Converse of bezout for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014)

Ref Expression
Assertion bezoutr1 ABXYAX+BY=1AgcdB=1

Proof

Step Hyp Ref Expression
1 bezoutr ABXYAgcdBAX+BY
2 1 adantr ABXYAX+BY=1AgcdBAX+BY
3 simpr ABXYAX+BY=1AX+BY=1
4 2 3 breqtrd ABXYAX+BY=1AgcdB1
5 gcdcl ABAgcdB0
6 5 nn0zd ABAgcdB
7 6 ad2antrr ABXYAX+BY=1AgcdB
8 1nn 1
9 8 a1i ABXYAX+BY=11
10 dvdsle AgcdB1AgcdB1AgcdB1
11 7 9 10 syl2anc ABXYAX+BY=1AgcdB1AgcdB1
12 4 11 mpd ABXYAX+BY=1AgcdB1
13 simpll ABXYAX+BY=1AB
14 oveq1 A=0AX=0X
15 oveq1 B=0BY=0Y
16 14 15 oveqan12d A=0B=0AX+BY=0X+0Y
17 zcn XX
18 17 mul02d X0X=0
19 zcn YY
20 19 mul02d Y0Y=0
21 18 20 oveqan12d XY0X+0Y=0+0
22 16 21 sylan9eqr XYA=0B=0AX+BY=0+0
23 00id 0+0=0
24 22 23 eqtrdi XYA=0B=0AX+BY=0
25 24 adantll ABXYA=0B=0AX+BY=0
26 0ne1 01
27 26 a1i ABXYA=0B=001
28 25 27 eqnetrd ABXYA=0B=0AX+BY1
29 28 ex ABXYA=0B=0AX+BY1
30 29 necon2bd ABXYAX+BY=1¬A=0B=0
31 30 imp ABXYAX+BY=1¬A=0B=0
32 gcdn0cl AB¬A=0B=0AgcdB
33 13 31 32 syl2anc ABXYAX+BY=1AgcdB
34 nnle1eq1 AgcdBAgcdB1AgcdB=1
35 33 34 syl ABXYAX+BY=1AgcdB1AgcdB=1
36 12 35 mpbid ABXYAX+BY=1AgcdB=1
37 36 ex ABXYAX+BY=1AgcdB=1