Description: Converse of bezout for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | bezoutr1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bezoutr | |
|
2 | 1 | adantr | |
3 | simpr | |
|
4 | 2 3 | breqtrd | |
5 | gcdcl | |
|
6 | 5 | nn0zd | |
7 | 6 | ad2antrr | |
8 | 1nn | |
|
9 | 8 | a1i | |
10 | dvdsle | |
|
11 | 7 9 10 | syl2anc | |
12 | 4 11 | mpd | |
13 | simpll | |
|
14 | oveq1 | |
|
15 | oveq1 | |
|
16 | 14 15 | oveqan12d | |
17 | zcn | |
|
18 | 17 | mul02d | |
19 | zcn | |
|
20 | 19 | mul02d | |
21 | 18 20 | oveqan12d | |
22 | 16 21 | sylan9eqr | |
23 | 00id | |
|
24 | 22 23 | eqtrdi | |
25 | 24 | adantll | |
26 | 0ne1 | |
|
27 | 26 | a1i | |
28 | 25 27 | eqnetrd | |
29 | 28 | ex | |
30 | 29 | necon2bd | |
31 | 30 | imp | |
32 | gcdn0cl | |
|
33 | 13 31 32 | syl2anc | |
34 | nnle1eq1 | |
|
35 | 33 34 | syl | |
36 | 12 35 | mpbid | |
37 | 36 | ex | |