Metamath Proof Explorer


Theorem birthday

Description: The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for K = 2 3 and N = 3 6 5 , fewer than half of the set of all functions from 1 ... K to 1 ... N are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses birthday.s S=f|f:1K1N
birthday.t T=f|f:1K1-11N
birthday.k K=23
birthday.n N=365
Assertion birthday TS<12

Proof

Step Hyp Ref Expression
1 birthday.s S=f|f:1K1N
2 birthday.t T=f|f:1K1-11N
3 birthday.k K=23
4 birthday.n N=365
5 2nn0 20
6 3nn0 30
7 5 6 deccl 230
8 3 7 eqeltri K0
9 6nn0 60
10 6 9 deccl 360
11 5nn 5
12 10 11 decnncl 365
13 4 12 eqeltri N
14 1 2 birthdaylem3 K0NTSeK2K2N
15 8 13 14 mp2an TSeK2K2N
16 log2ub log2<253365
17 8 nn0cni K
18 17 sqvali K2=KK
19 17 mulridi K1=K
20 19 eqcomi K=K1
21 18 20 oveq12i K2K=KKK1
22 ax-1cn 1
23 17 17 22 subdii KK1=KKK1
24 21 23 eqtr4i K2K=KK1
25 24 oveq1i K2K2=KK12
26 17 22 subcli K1
27 2cn 2
28 2ne0 20
29 17 26 27 28 divassi KK12=KK12
30 1nn0 10
31 5 5 deccl 220
32 31 nn0cni 22
33 2p1e3 2+1=3
34 eqid 22=22
35 5 5 33 34 decsuc 22+1=23
36 3 35 eqtr4i K=22+1
37 32 22 36 mvrraddi K1=22
38 37 oveq1i K12=222
39 5 11multnc 211=22
40 30 30 deccl 110
41 40 nn0cni 11
42 32 27 41 28 divmuli 222=11211=22
43 39 42 mpbir 222=11
44 38 43 eqtri K12=11
45 19 3 eqtri K1=23
46 3p2e5 3+2=5
47 5 6 5 45 46 decaddi K1+2=25
48 8 30 30 44 6 5 47 45 decmul2c KK12=253
49 25 29 48 3eqtri K2K2=253
50 49 4 oveq12i K2K2N=253365
51 16 50 breqtrri log2<K2K2N
52 2rp 2+
53 relogcl 2+log2
54 52 53 ax-mp log2
55 5nn0 50
56 5 55 deccl 250
57 56 6 deccl 2530
58 49 57 eqeltri K2K20
59 58 nn0rei K2K2
60 nndivre K2K2NK2K2N
61 59 13 60 mp2an K2K2N
62 54 61 ltnegi log2<K2K2NK2K2N<log2
63 51 62 mpbi K2K2N<log2
64 61 renegcli K2K2N
65 54 renegcli log2
66 eflt K2K2Nlog2K2K2N<log2eK2K2N<elog2
67 64 65 66 mp2an K2K2N<log2eK2K2N<elog2
68 63 67 mpbi eK2K2N<elog2
69 54 recni log2
70 efneg log2elog2=1elog2
71 69 70 ax-mp elog2=1elog2
72 reeflog 2+elog2=2
73 52 72 ax-mp elog2=2
74 73 oveq2i 1elog2=12
75 71 74 eqtri elog2=12
76 68 75 breqtri eK2K2N<12
77 1 2 birthdaylem1 TSSFinNS
78 77 simp2i SFin
79 77 simp1i TS
80 ssfi SFinTSTFin
81 78 79 80 mp2an TFin
82 hashcl TFinT0
83 81 82 ax-mp T0
84 83 nn0rei T
85 77 simp3i NS
86 13 85 ax-mp S
87 hashnncl SFinSS
88 78 87 ax-mp SS
89 86 88 mpbir S
90 nndivre TSTS
91 84 89 90 mp2an TS
92 reefcl K2K2NeK2K2N
93 64 92 ax-mp eK2K2N
94 halfre 12
95 91 93 94 lelttri TSeK2K2NeK2K2N<12TS<12
96 15 76 95 mp2an TS<12