Metamath Proof Explorer


Theorem brsegle2

Description: Alternate characterization of segment comparison. Theorem 5.5 of Schwabhauser p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion brsegle2 NA𝔼NB𝔼NC𝔼ND𝔼NABSegCDx𝔼NBBtwnAxAxCgrCD

Proof

Step Hyp Ref Expression
1 brsegle NA𝔼NB𝔼NC𝔼ND𝔼NABSegCDy𝔼NyBtwnCDABCgrCy
2 simprl NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyyBtwnCD
3 simpl1 NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NN
4 simpl3l NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NC𝔼N
5 simpl3r NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼ND𝔼N
6 simpr NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼Ny𝔼N
7 btwncolinear2 NC𝔼ND𝔼Ny𝔼NyBtwnCDCColinearyD
8 3 4 5 6 7 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDCColinearyD
9 8 adantr NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyyBtwnCDCColinearyD
10 2 9 mpd NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyCColinearyD
11 simpl2l NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NA𝔼N
12 simpl2r NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NB𝔼N
13 simprr NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyABCgrCy
14 3 11 12 4 6 13 cgrcomand NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrAB
15 simpl2 NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NA𝔼NB𝔼N
16 lineext NC𝔼Ny𝔼ND𝔼NA𝔼NB𝔼NCColinearyDCyCgrABx𝔼NCyDCgr3ABx
17 3 4 6 5 15 16 syl131anc NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NCColinearyDCyCgrABx𝔼NCyDCgr3ABx
18 17 adantr NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyCColinearyDCyCgrABx𝔼NCyDCgr3ABx
19 10 14 18 mp2and NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyx𝔼NCyDCgr3ABx
20 an32 NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼Nx𝔼NNA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼N
21 simpll1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NN
22 simpl3l NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NC𝔼N
23 22 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NC𝔼N
24 simpr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼Ny𝔼N
25 simpl3r NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼ND𝔼N
26 25 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼ND𝔼N
27 simpl2l NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NA𝔼N
28 27 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NA𝔼N
29 simpl2r NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NB𝔼N
30 29 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NB𝔼N
31 simplr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼Nx𝔼N
32 brcgr3 NC𝔼Ny𝔼ND𝔼NA𝔼NB𝔼Nx𝔼NCyDCgr3ABxCyCgrABCDCgrAxyDCgrBx
33 21 23 24 26 28 30 31 32 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NCyDCgr3ABxCyCgrABCDCgrAxyDCgrBx
34 33 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyDCgr3ABxCyCgrABCDCgrAxyDCgrBx
35 simp2l NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxyBtwnCD
36 simp3 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxCyCgrABCDCgrAxyDCgrBx
37 33 3ad2ant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxCyDCgr3ABxCyCgrABCDCgrAxyDCgrBx
38 36 37 mpbird NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxCyDCgr3ABx
39 btwnxfr NC𝔼Ny𝔼ND𝔼NA𝔼NB𝔼Nx𝔼NyBtwnCDCyDCgr3ABxBBtwnAx
40 21 23 24 26 28 30 31 39 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDCyDCgr3ABxBBtwnAx
41 40 3ad2ant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxyBtwnCDCyDCgr3ABxBBtwnAx
42 35 38 41 mp2and NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxBBtwnAx
43 simp32 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxCDCgrAx
44 cgrcom NC𝔼ND𝔼NA𝔼Nx𝔼NCDCgrAxAxCgrCD
45 21 23 26 28 31 44 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NCDCgrAxAxCgrCD
46 45 3ad2ant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxCDCgrAxAxCgrCD
47 43 46 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxAxCgrCD
48 42 47 jca NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxBBtwnAxAxCgrCD
49 48 3expia NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyCgrABCDCgrAxyDCgrBxBBtwnAxAxCgrCD
50 34 49 sylbid NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NyBtwnCDABCgrCyCyDCgr3ABxBBtwnAxAxCgrCD
51 20 50 sylanb NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼Nx𝔼NyBtwnCDABCgrCyCyDCgr3ABxBBtwnAxAxCgrCD
52 51 an32s NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyx𝔼NCyDCgr3ABxBBtwnAxAxCgrCD
53 52 reximdva NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyx𝔼NCyDCgr3ABxx𝔼NBBtwnAxAxCgrCD
54 19 53 mpd NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyx𝔼NBBtwnAxAxCgrCD
55 54 rexlimdva2 NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyx𝔼NBBtwnAxAxCgrCD
56 simprl NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDBBtwnAx
57 simpll1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDN
58 27 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDA𝔼N
59 simplr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDx𝔼N
60 29 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDB𝔼N
61 btwncolinear1 NA𝔼Nx𝔼NB𝔼NBBtwnAxAColinearxB
62 57 58 59 60 61 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDBBtwnAxAColinearxB
63 56 62 mpd NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDAColinearxB
64 simprr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDAxCgrCD
65 simpl1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NN
66 simpr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nx𝔼N
67 simpl3 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NC𝔼ND𝔼N
68 lineext NA𝔼Nx𝔼NB𝔼NC𝔼ND𝔼NAColinearxBAxCgrCDy𝔼NAxBCgr3CDy
69 65 27 66 29 67 68 syl131anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NAColinearxBAxCgrCDy𝔼NAxBCgr3CDy
70 69 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDAColinearxBAxCgrCDy𝔼NAxBCgr3CDy
71 63 64 70 mp2and NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDy𝔼NAxBCgr3CDy
72 27 66 29 3jca NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NA𝔼Nx𝔼NB𝔼N
73 72 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NA𝔼Nx𝔼NB𝔼N
74 brcgr3 NA𝔼Nx𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NAxBCgr3CDyAxCgrCDABCgrCyxBCgrDy
75 21 73 23 26 24 74 syl113anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NAxBCgr3CDyAxCgrCDABCgrCyxBCgrDy
76 75 adantr NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxBCgr3CDyAxCgrCDABCgrCyxBCgrDy
77 simp2l NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyBBtwnAx
78 simp32 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyABCgrCy
79 simp2r NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyAxCgrCD
80 simp33 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyxBCgrDy
81 cgrcomlr Nx𝔼NB𝔼ND𝔼Ny𝔼NxBCgrDyBxCgryD
82 21 31 30 26 24 81 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NxBCgrDyBxCgryD
83 82 3ad2ant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyxBCgrDyBxCgryD
84 80 83 mpbid NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyBxCgryD
85 78 79 84 3jca NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyABCgrCyAxCgrCDBxCgryD
86 brcgr3 NA𝔼NB𝔼Nx𝔼NC𝔼Ny𝔼ND𝔼NABxCgr3CyDABCgrCyAxCgrCDBxCgryD
87 21 28 30 31 23 24 26 86 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NABxCgr3CyDABCgrCyAxCgrCDBxCgryD
88 87 3ad2ant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyABxCgr3CyDABCgrCyAxCgrCDBxCgryD
89 85 88 mpbird NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyABxCgr3CyD
90 btwnxfr NA𝔼NB𝔼Nx𝔼NC𝔼Ny𝔼ND𝔼NBBtwnAxABxCgr3CyDyBtwnCD
91 21 28 30 31 23 24 26 90 syl133anc NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxABxCgr3CyDyBtwnCD
92 91 3ad2ant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyBBtwnAxABxCgr3CyDyBtwnCD
93 77 89 92 mp2and NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyyBtwnCD
94 93 78 jca NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyyBtwnCDABCgrCy
95 94 3expia NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxCgrCDABCgrCyxBCgrDyyBtwnCDABCgrCy
96 76 95 sylbid NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Ny𝔼NBBtwnAxAxCgrCDAxBCgr3CDyyBtwnCDABCgrCy
97 96 an32s NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDy𝔼NAxBCgr3CDyyBtwnCDABCgrCy
98 97 reximdva NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDy𝔼NAxBCgr3CDyy𝔼NyBtwnCDABCgrCy
99 71 98 mpd NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDy𝔼NyBtwnCDABCgrCy
100 99 rexlimdva2 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxAxCgrCDy𝔼NyBtwnCDABCgrCy
101 55 100 impbid NA𝔼NB𝔼NC𝔼ND𝔼Ny𝔼NyBtwnCDABCgrCyx𝔼NBBtwnAxAxCgrCD
102 1 101 bitrd NA𝔼NB𝔼NC𝔼ND𝔼NABSegCDx𝔼NBBtwnAxAxCgrCD