Metamath Proof Explorer


Theorem canthp1lem1

Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion canthp1lem1 1𝑜AA⊔︀2𝑜𝒫A

Proof

Step Hyp Ref Expression
1 1sdom2 1𝑜2𝑜
2 djuxpdom 1𝑜A1𝑜2𝑜A⊔︀2𝑜A×2𝑜
3 1 2 mpan2 1𝑜AA⊔︀2𝑜A×2𝑜
4 sdom0 ¬1𝑜
5 breq2 A=1𝑜A1𝑜
6 4 5 mtbiri A=¬1𝑜A
7 6 con2i 1𝑜A¬A=
8 neq0 ¬A=xxA
9 7 8 sylib 1𝑜AxxA
10 relsdom Rel
11 10 brrelex2i 1𝑜AAV
12 11 adantr 1𝑜AxAAV
13 enrefg AVAA
14 12 13 syl 1𝑜AxAAA
15 df2o2 2𝑜=
16 pwpw0 𝒫=
17 15 16 eqtr4i 2𝑜=𝒫
18 0ex V
19 vex xV
20 en2sn VxVx
21 18 19 20 mp2an x
22 pwen x𝒫𝒫x
23 21 22 ax-mp 𝒫𝒫x
24 17 23 eqbrtri 2𝑜𝒫x
25 xpen AA2𝑜𝒫xA×2𝑜A×𝒫x
26 14 24 25 sylancl 1𝑜AxAA×2𝑜A×𝒫x
27 vsnex xV
28 27 pwex 𝒫xV
29 uncom Axx=xAx
30 simpr 1𝑜AxAxA
31 30 snssd 1𝑜AxAxA
32 undif xAxAx=A
33 31 32 sylib 1𝑜AxAxAx=A
34 29 33 eqtrid 1𝑜AxAAxx=A
35 12 difexd 1𝑜AxAAxV
36 canth2g AxVAx𝒫Ax
37 domunsn Ax𝒫AxAxx𝒫Ax
38 35 36 37 3syl 1𝑜AxAAxx𝒫Ax
39 34 38 eqbrtrrd 1𝑜AxAA𝒫Ax
40 xpdom1g 𝒫xVA𝒫AxA×𝒫x𝒫Ax×𝒫x
41 28 39 40 sylancr 1𝑜AxAA×𝒫x𝒫Ax×𝒫x
42 endomtr A×2𝑜A×𝒫xA×𝒫x𝒫Ax×𝒫xA×2𝑜𝒫Ax×𝒫x
43 26 41 42 syl2anc 1𝑜AxAA×2𝑜𝒫Ax×𝒫x
44 pwdjuen AxVxV𝒫Ax⊔︀x𝒫Ax×𝒫x
45 35 27 44 sylancl 1𝑜AxA𝒫Ax⊔︀x𝒫Ax×𝒫x
46 45 ensymd 1𝑜AxA𝒫Ax×𝒫x𝒫Ax⊔︀x
47 domentr A×2𝑜𝒫Ax×𝒫x𝒫Ax×𝒫x𝒫Ax⊔︀xA×2𝑜𝒫Ax⊔︀x
48 43 46 47 syl2anc 1𝑜AxAA×2𝑜𝒫Ax⊔︀x
49 27 a1i 1𝑜AxAxV
50 disjdifr Axx=
51 50 a1i 1𝑜AxAAxx=
52 endjudisj AxVxVAxx=Ax⊔︀xAxx
53 35 49 51 52 syl3anc 1𝑜AxAAx⊔︀xAxx
54 53 34 breqtrd 1𝑜AxAAx⊔︀xA
55 pwen Ax⊔︀xA𝒫Ax⊔︀x𝒫A
56 54 55 syl 1𝑜AxA𝒫Ax⊔︀x𝒫A
57 domentr A×2𝑜𝒫Ax⊔︀x𝒫Ax⊔︀x𝒫AA×2𝑜𝒫A
58 48 56 57 syl2anc 1𝑜AxAA×2𝑜𝒫A
59 9 58 exlimddv 1𝑜AA×2𝑜𝒫A
60 domtr A⊔︀2𝑜A×2𝑜A×2𝑜𝒫AA⊔︀2𝑜𝒫A
61 3 59 60 syl2anc 1𝑜AA⊔︀2𝑜𝒫A