Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | canthp1lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1sdom2 | |
|
2 | djuxpdom | |
|
3 | 1 2 | mpan2 | |
4 | sdom0 | |
|
5 | breq2 | |
|
6 | 4 5 | mtbiri | |
7 | 6 | con2i | |
8 | neq0 | |
|
9 | 7 8 | sylib | |
10 | relsdom | |
|
11 | 10 | brrelex2i | |
12 | 11 | adantr | |
13 | enrefg | |
|
14 | 12 13 | syl | |
15 | df2o2 | |
|
16 | pwpw0 | |
|
17 | 15 16 | eqtr4i | |
18 | 0ex | |
|
19 | vex | |
|
20 | en2sn | |
|
21 | 18 19 20 | mp2an | |
22 | pwen | |
|
23 | 21 22 | ax-mp | |
24 | 17 23 | eqbrtri | |
25 | xpen | |
|
26 | 14 24 25 | sylancl | |
27 | vsnex | |
|
28 | 27 | pwex | |
29 | uncom | |
|
30 | simpr | |
|
31 | 30 | snssd | |
32 | undif | |
|
33 | 31 32 | sylib | |
34 | 29 33 | eqtrid | |
35 | 12 | difexd | |
36 | canth2g | |
|
37 | domunsn | |
|
38 | 35 36 37 | 3syl | |
39 | 34 38 | eqbrtrrd | |
40 | xpdom1g | |
|
41 | 28 39 40 | sylancr | |
42 | endomtr | |
|
43 | 26 41 42 | syl2anc | |
44 | pwdjuen | |
|
45 | 35 27 44 | sylancl | |
46 | 45 | ensymd | |
47 | domentr | |
|
48 | 43 46 47 | syl2anc | |
49 | 27 | a1i | |
50 | disjdifr | |
|
51 | 50 | a1i | |
52 | endjudisj | |
|
53 | 35 49 51 52 | syl3anc | |
54 | 53 34 | breqtrd | |
55 | pwen | |
|
56 | 54 55 | syl | |
57 | domentr | |
|
58 | 48 56 57 | syl2anc | |
59 | 9 58 | exlimddv | |
60 | domtr | |
|
61 | 3 59 60 | syl2anc | |