Metamath Proof Explorer


Theorem cardcf

Description: Cofinality is a cardinal number. Proposition 11.11 of TakeutiZaring p. 103. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cardcf cardcfA=cfA

Proof

Step Hyp Ref Expression
1 cfval AOncfA=x|yx=cardyyAzAwyzw
2 vex vV
3 eqeq1 x=vx=cardyv=cardy
4 3 anbi1d x=vx=cardyyAzAwyzwv=cardyyAzAwyzw
5 4 exbidv x=vyx=cardyyAzAwyzwyv=cardyyAzAwyzw
6 2 5 elab vx|yx=cardyyAzAwyzwyv=cardyyAzAwyzw
7 fveq2 v=cardycardv=cardcardy
8 cardidm cardcardy=cardy
9 7 8 eqtrdi v=cardycardv=cardy
10 eqeq2 v=cardycardv=vcardv=cardy
11 9 10 mpbird v=cardycardv=v
12 11 adantr v=cardyyAzAwyzwcardv=v
13 12 exlimiv yv=cardyyAzAwyzwcardv=v
14 6 13 sylbi vx|yx=cardyyAzAwyzwcardv=v
15 cardon cardvOn
16 14 15 eqeltrrdi vx|yx=cardyyAzAwyzwvOn
17 16 ssriv x|yx=cardyyAzAwyzwOn
18 fvex cfAV
19 1 18 eqeltrrdi AOnx|yx=cardyyAzAwyzwV
20 intex x|yx=cardyyAzAwyzwx|yx=cardyyAzAwyzwV
21 19 20 sylibr AOnx|yx=cardyyAzAwyzw
22 onint x|yx=cardyyAzAwyzwOnx|yx=cardyyAzAwyzwx|yx=cardyyAzAwyzwx|yx=cardyyAzAwyzw
23 17 21 22 sylancr AOnx|yx=cardyyAzAwyzwx|yx=cardyyAzAwyzw
24 1 23 eqeltrd AOncfAx|yx=cardyyAzAwyzw
25 fveq2 v=cfAcardv=cardcfA
26 id v=cfAv=cfA
27 25 26 eqeq12d v=cfAcardv=vcardcfA=cfA
28 27 14 vtoclga cfAx|yx=cardyyAzAwyzwcardcfA=cfA
29 24 28 syl AOncardcfA=cfA
30 cff cf:OnOn
31 30 fdmi domcf=On
32 31 eleq2i AdomcfAOn
33 ndmfv ¬AdomcfcfA=
34 32 33 sylnbir ¬AOncfA=
35 card0 card=
36 fveq2 cfA=cardcfA=card
37 id cfA=cfA=
38 35 36 37 3eqtr4a cfA=cardcfA=cfA
39 34 38 syl ¬AOncardcfA=cfA
40 29 39 pm2.61i cardcfA=cfA