Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catcoppccl.c | |
|
catcoppccl.b | |
||
catcoppccl.o | |
||
catcoppccl.1 | |
||
catcoppccl.2 | |
||
catcoppccl.3 | |
||
Assertion | catcoppccl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcoppccl.c | |
|
2 | catcoppccl.b | |
|
3 | catcoppccl.o | |
|
4 | catcoppccl.1 | |
|
5 | catcoppccl.2 | |
|
6 | catcoppccl.3 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 7 8 9 3 | oppcval | |
11 | 6 10 | syl | |
12 | 1 2 4 6 | catcbascl | |
13 | homid | |
|
14 | 4 5 | wunndx | |
15 | 13 4 14 | wunstr | |
16 | 1 2 4 6 | catchomcl | |
17 | 4 16 | wuntpos | |
18 | 4 15 17 | wunop | |
19 | 4 12 18 | wunsets | |
20 | ccoid | |
|
21 | 20 4 14 | wunstr | |
22 | 1 2 4 6 | catcbaselcl | |
23 | 4 22 22 | wunxp | |
24 | 4 23 22 | wunxp | |
25 | 1 2 4 6 | catcccocl | |
26 | 4 25 | wunrn | |
27 | 4 26 | wununi | |
28 | 4 27 | wundm | |
29 | 4 28 | wuncnv | |
30 | 4 | wun0 | |
31 | 4 30 | wunsn | |
32 | 4 29 31 | wunun | |
33 | 4 27 | wunrn | |
34 | 4 32 33 | wunxp | |
35 | 4 34 | wunpw | |
36 | tposssxp | |
|
37 | ovssunirn | |
|
38 | dmss | |
|
39 | 37 38 | ax-mp | |
40 | cnvss | |
|
41 | unss1 | |
|
42 | 39 40 41 | mp2b | |
43 | 37 | rnssi | |
44 | xpss12 | |
|
45 | 42 43 44 | mp2an | |
46 | 36 45 | sstri | |
47 | elpw2g | |
|
48 | 34 47 | syl | |
49 | 46 48 | mpbiri | |
50 | 49 | ralrimivw | |
51 | 50 | ralrimivw | |
52 | eqid | |
|
53 | 52 | fmpo | |
54 | 51 53 | sylib | |
55 | 4 24 35 54 | wunf | |
56 | 4 21 55 | wunop | |
57 | 4 19 56 | wunsets | |
58 | 11 57 | eqeltrd | |
59 | 1 2 4 | catcbas | |
60 | 6 59 | eleqtrd | |
61 | 60 | elin2d | |
62 | 3 | oppccat | |
63 | 61 62 | syl | |
64 | 58 63 | elind | |
65 | 64 59 | eleqtrrd | |