Metamath Proof Explorer


Theorem catcoppccl

Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses catcoppccl.c C=CatCatU
catcoppccl.b B=BaseC
catcoppccl.o O=oppCatX
catcoppccl.1 φUWUni
catcoppccl.2 φωU
catcoppccl.3 φXB
Assertion catcoppccl φOB

Proof

Step Hyp Ref Expression
1 catcoppccl.c C=CatCatU
2 catcoppccl.b B=BaseC
3 catcoppccl.o O=oppCatX
4 catcoppccl.1 φUWUni
5 catcoppccl.2 φωU
6 catcoppccl.3 φXB
7 eqid BaseX=BaseX
8 eqid HomX=HomX
9 eqid compX=compX
10 7 8 9 3 oppcval XBO=XsSetHomndxtposHomXsSetcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stx
11 6 10 syl φO=XsSetHomndxtposHomXsSetcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stx
12 1 2 4 6 catcbascl φXU
13 homid Hom=SlotHomndx
14 4 5 wunndx φndxU
15 13 4 14 wunstr φHomndxU
16 1 2 4 6 catchomcl φHomXU
17 4 16 wuntpos φtposHomXU
18 4 15 17 wunop φHomndxtposHomXU
19 4 12 18 wunsets φXsSetHomndxtposHomXU
20 ccoid comp=Slotcompndx
21 20 4 14 wunstr φcompndxU
22 1 2 4 6 catcbaselcl φBaseXU
23 4 22 22 wunxp φBaseX×BaseXU
24 4 23 22 wunxp φBaseX×BaseX×BaseXU
25 1 2 4 6 catcccocl φcompXU
26 4 25 wunrn φrancompXU
27 4 26 wununi φrancompXU
28 4 27 wundm φdomrancompXU
29 4 28 wuncnv φdomrancompX-1U
30 4 wun0 φU
31 4 30 wunsn φU
32 4 29 31 wunun φdomrancompX-1U
33 4 27 wunrn φranrancompXU
34 4 32 33 wunxp φdomrancompX-1×ranrancompXU
35 4 34 wunpw φ𝒫domrancompX-1×ranrancompXU
36 tposssxp tposy2ndxcompX1stxdomy2ndxcompX1stx-1×rany2ndxcompX1stx
37 ovssunirn y2ndxcompX1stxrancompX
38 dmss y2ndxcompX1stxrancompXdomy2ndxcompX1stxdomrancompX
39 37 38 ax-mp domy2ndxcompX1stxdomrancompX
40 cnvss domy2ndxcompX1stxdomrancompXdomy2ndxcompX1stx-1domrancompX-1
41 unss1 domy2ndxcompX1stx-1domrancompX-1domy2ndxcompX1stx-1domrancompX-1
42 39 40 41 mp2b domy2ndxcompX1stx-1domrancompX-1
43 37 rnssi rany2ndxcompX1stxranrancompX
44 xpss12 domy2ndxcompX1stx-1domrancompX-1rany2ndxcompX1stxranrancompXdomy2ndxcompX1stx-1×rany2ndxcompX1stxdomrancompX-1×ranrancompX
45 42 43 44 mp2an domy2ndxcompX1stx-1×rany2ndxcompX1stxdomrancompX-1×ranrancompX
46 36 45 sstri tposy2ndxcompX1stxdomrancompX-1×ranrancompX
47 elpw2g domrancompX-1×ranrancompXUtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompXtposy2ndxcompX1stxdomrancompX-1×ranrancompX
48 34 47 syl φtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompXtposy2ndxcompX1stxdomrancompX-1×ranrancompX
49 46 48 mpbiri φtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompX
50 49 ralrimivw φyBaseXtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompX
51 50 ralrimivw φxBaseX×BaseXyBaseXtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompX
52 eqid xBaseX×BaseX,yBaseXtposy2ndxcompX1stx=xBaseX×BaseX,yBaseXtposy2ndxcompX1stx
53 52 fmpo xBaseX×BaseXyBaseXtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompXxBaseX×BaseX,yBaseXtposy2ndxcompX1stx:BaseX×BaseX×BaseX𝒫domrancompX-1×ranrancompX
54 51 53 sylib φxBaseX×BaseX,yBaseXtposy2ndxcompX1stx:BaseX×BaseX×BaseX𝒫domrancompX-1×ranrancompX
55 4 24 35 54 wunf φxBaseX×BaseX,yBaseXtposy2ndxcompX1stxU
56 4 21 55 wunop φcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stxU
57 4 19 56 wunsets φXsSetHomndxtposHomXsSetcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stxU
58 11 57 eqeltrd φOU
59 1 2 4 catcbas φB=UCat
60 6 59 eleqtrd φXUCat
61 60 elin2d φXCat
62 3 oppccat XCatOCat
63 61 62 syl φOCat
64 58 63 elind φOUCat
65 64 59 eleqtrrd φOB